Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Expression of Snail protein in tumor–stroma interface

Abstract

The product of Snail gene is a repressor of E-cadherin transcription and an inductor of the epithelial-to-mesenchymal transition in several epithelial tumor cell lines. In order to examine Snail expression in animal and human tissues, we have raised a monoclonal antibody (MAb) that reacts with the regulatory domain of this protein. Analysis of murine embryos shows that Snail is expressed in extraembryonic tissues and embryonic mesoderm, in mesenchymal cells of lungs and dermis as well as in cartilage. Little reactivity was detected in adult tissues as Snail was not constitutively expressed in most mesenchymal cells. However, Snail expression was observed in activated fibroblasts involved in wound healing in mice skin. Moreover, Snail was detected in pathological conditions causing hyperstimulation of fibroblasts, such as fibromatosis. Analysis of Snail expression in tumors revealed that it was highly expressed in sarcomas and fibrosarcomas. In epithelial tumors, it presented a more limited distribution, restricted to stromal cells placed in the vicinity of the tumor and to tumoral cells in the same areas. These results demonstrate that Snail is present in activated mesenchymal cells, indicate its relevance in the communication between tumor and stroma and suggest that it can promote the conversion of carcinoma cells to stromal cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Barberà MJ, Puig I, Domínguez D, Julien-Grille S, Guaita-Esteruelas S, Peiró S et al. (2004). Oncogene 23: 7345–7354.

  • Barrallo-Gimeno A, Nieto MA . (2005). Development 132: 3151–3161.

  • Batlle E, Sancho E, Francí C, Domínguez D, Monfar M, Baulida J et al. (2000). Nat Cell Biol 2: 84–89.

  • Blanco MJ, Moreno-Bueno G, Sarrio D, Locascio A, Cano A, Palacios J et al. (2002). Oncogene 21: 3241–3246.

  • Cano A, Pérez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG et al. (2000). Nat Cell Biol 2: 76–83.

  • Carver EA, Jiang R, Lan Y, Oram KF, Gridley T . (2001). Mol Cell Biol 21: 8184–8188.

  • Comijn J, Berx G, Vermassen P, Verschueren K, van Grunsven L, Bruyneel E et al. (2001). Mol Cell 7: 1267–1278.

  • De Craene B, Van Roy F, Berx G . (2005). Cell Signal 17: 535–547.

  • Domínguez D, Montserrat-Sentís B, Virgós-Soler A, Guaita S, Grueso J, Porta M et al. (2003). Mol Cell Biol 23: 5078–5089.

  • Elloul S, Elstrand MB, Nesland JM, Trope CG, Kvalheim G, Goldberg I et al. (2005). Cancer 103: 1631–1643.

  • Fujita N, Jaye DL, Kajita M, Geigerman C, Moreno CS, Wade PA . (2003). Cell 113: 207–219.

  • Galie M, Sorrentino C, Montani M, Micossi L, DI Carlo E, D'Antuono T et al. (2005). Carcinogenesis 26: 1868–1878.

  • Grooteclaes ML, Frisch SM . (2000). Oncogene 19: 3823–3828.

  • Guaita S, Puig I, Franci C, Garrido M, Dominguez D, Batlle E et al. (2002). J Biol Chem 277: 30209–39216.

  • Huber MA, Kraut N, Beug H . (2005). Cur Opin Cell Biol 17: 1–11.

  • Jahoda CA, Horne KA, Oliver RF . (1984). Nature 311: 560–562.

  • Jamora C, Lee P, Kocieniewski P, Azhar M, Hosokawa R, Chai Y et al. (2005). PLOS Biol 3: e11.

  • Kalluri R, Neilson EG . (2003). J Clin Invest 112: 1776–1784.

  • Liotta LA, Kohn EC . (2001). Nature 411: 375–379.

  • Martin P . (1997). Science 276: 75–81.

  • Moinfar F, Mann YG, Arnould L, Bratthauer GL, Ratschek M, Tavassoli F . (2000). Cancer Res 60: 2562–2566.

  • Moody SE, Perez D, Pan T, Sarkisian CJ, Portocarrero CP, Sterner CJ et al. (2005). Cancer Cell 8: 197–209.

  • Nieto MA . (2002). Nat Rev Mol Cell Biol 3: 155–166.

  • Nieto MA, Bennett MF, Sargent MG, Wilkinson DG . (1992). Development 116: 227–237.

  • Olumi AF, Grossfeld GD, Hayward SW, Carroll PR, Tlsty TD, Cunha GR . (1999). Cancer Res 59: 5002–5011.

  • Orimo A, Gupta PB, Sgrol DC, Arenzana-Seisdedos F, Delaunay T, Naeem R et al. (2005). Cell 121: 335–348.

  • Palmer HG, Larriba MJ, Garcia JM, Ordoñez-Moran P, Peña C, Peiro S et al. (2004). Nat Med 10: 917–919.

  • Peinado H, Iglesias-de la Cruiz MC, Olmeda D, Csiszar K, Fong KSK, Vega S et al. (2005). EMBO J 24: 3446–3458.

  • Peinado H, Quintanilla M, Cano A . (2003). J Biol Chem 278: 21113–22123.

  • Peña C, Garcia JM, Silva J, Garcia V, Rodriguez R, Alonso I et al. (2005). Hum Mol Genet 14: 3361–3370.

  • Pérez-Moreno M, Locascio A, Rodrigo I, Dhondt G, Portillo F, Nieto MA et al. (2001). J Biol Chem 276: 27424–27431.

  • Perl AK, Wilgenbus P, Dahl U, Semb H, Christofori G . (1998). Nature 392: 190–193.

  • Petersen OW, Nielsen HL, Gudjonsson T, Villadsen R, Rank F, Niebuhr E et al. (2003). Am J Pathol 162: 391–402.

  • Rosivatz E, Becker I, Bamba M, Schott C, Diebold J, Mayr D et al. (2004). Int J Cancer 111: 711–719.

  • Rosivatz E, Becker I, Specht K, Fricke E, Luber B, Busch R et al. (2002). Am J Pathol 161: 1881–1891.

  • Rosivatz E, Becker KF, Kremmer E, Schott C, Blechschmidt K, Höfler H et al. (2006). Virchows Arch 448: 277–287.

  • Shekhar MPV, Werdell J, Santner SJ, Pauley R, Tait L . (2001). Cancer Res 61: 1320–1326.

  • Stuelten CH, Byfield SD, Arany PR, Karpova TS, Stetler-Stevenson WG, Roberts AB . (2005). J Cell Sci 118: 2143–2153.

  • Sugimachi K, Tanaka S, Kameyama T, Taguchi K, Aishima S, Shimada M et al. (2003). Clin Cancer Res 9: 2657–2664.

  • Vleminckx K, Vakaet L, Mareel M, Fiers W, Van Roy F . (1991). Cell 66: 107–119.

  • Yang Z, Rayala S, Nguyen D, Vadlamudi RK, Chen S, Kumar R . (2005). Cancer Res 65: 3179–3184.

  • Yook JI, Li XY, Ota I, Fearon ER, Weiss SJ . (2005). J Biol Chem 280: 1740–1748.

  • Zhou BP, Deng J, Xia W, Xu J, Li Y, Gunduz M et al. (2004). Nat Cell Biol 6: 931–940.

Download references

Acknowledgements

We thank Dr A Nieto and JL De la Pompa for providing sections of mouse embryos and A Nieto for her help in interpreting Snail staining results. The assistance of Pilar Muñoz in the analysis of Snail expression in tumors is also appreciated. This study was supported by grants awarded to AGH by the Ministerio de Ciencia y Tecnología (SAF2003-02324) and the Fundación Científica de la Asociación Española Contra el Càncer, and to MT by the K Albin Johansson Foundation and Mary och Georg C Ehrnrooths stifelse. Partial support from a grant from Instituto Carlos III (RTICCC, C03710) is also appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I Virtanen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Francí, C., Takkunen, M., Dave, N. et al. Expression of Snail protein in tumor–stroma interface. Oncogene 25, 5134–5144 (2006). https://doi.org/10.1038/sj.onc.1209519

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209519

Keywords

This article is cited by

Search

Quick links