Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Human polyomavirus BKV transcriptionally activates DNA methyltransferase 1 through the pRb/E2F pathway

Abstract

Many DNA tumor virus oncogenes are capable of activating and highjacking the host cell's DNA replication machinery for its own reproduction purposes through targeting and inactivation of the retinoblastoma pocket protein family. Pocket proteins function to regulate cell cycle progression and DNA synthesis through inhibitory interactions with the E2F transcription factors. The interaction of viral oncogenes with the pocket proteins is crucial for their transforming activity. We recently demonstrated that the DNA methyltransferase 1 (DNMT1) gene is an E2F target gene that is transcriptionally activated in cells lacking the retinoblastoma gene (Rb−/−). Overexpression of DNMT1 is implicated in tumor suppressor gene hypermethylation which is associated with tumorigenesis. Given that viral oncogenes potently stimulate E2F activity, we hypothesized that viral infection might activate DNMT1 and thereby promote transformation. Herein, we demonstrate that DNMT1 is strongly activated by the human polyomavirus BKV large T antigen (TAg) and adenovirus E1a. Viral oncogene mutants incapable of binding the pocket proteins are ineffective at activating DNMT1 compared to their wild-type counterparts. Additionally, mutation of the E2F sites within the DNMT1 promoters dramatically abrogates transcriptional activation. These data suggest that viral induction of DNMT1 through modulation of the pRB/E2F pathway may be involved in viral transformation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Agoston AT, Argani P, Yegnasubramanian S, De Marzo AM, Ansari-Lari MA, Hicks JL et al. (2005). J Biol Chem 280: 18302–18310.

  • Azzi A, Fanci R, Bosi A, Ciappi S, Zakrzewska K, de Santis R et al. (1994). Bone Marrow Transplant 14: 235–240.

  • Bakin AV, Curran T . (1999). Science 283: 387–390.

  • Bestor TH . (2000). Hum Mol Genet 9: 2395–2402.

  • Bestor TH, Tycko B . (1996). Nat Genet 12: 363–367.

  • Biniszkiewicz D, Gribnau J, Ramsahoye B, Gaudet F, Eggan K, Humpherys D et al. (2002). Mol Cell Biol 22: 2124–2135.

  • Boehm JS, Hession MT, Bulmer SE, Hahn WC . (2005). Mol Cell Biol 25: 6464–6474.

  • Bollag B, Chuke WF, Frisque RJ . (1989). J Virol 63: 863–872.

  • Bouchard J, Walker MC, Leclerc JM, Lapointe N, Beaulieu R, Thibodeau L . (1990). Antimicrob Agents Chemother 34: 206–209.

  • Brehm A, Miska EA, McCance DJ, Reid JL, Bannister AJ, Kouzarides T . (1998). Nature 391: 597–601.

  • Campbell KS, Mullane KP, Aksoy IA, Stubdal H, Zalvide J, Pipas JM et al. (1997). Genes Dev 11: 1098–1110.

  • Chellappan S, Kraus VB, Kroger B, Munger K, Howley PM, Phelps WC et al. (1992). Proc Natl Acad Sci USA 89: 4549–4553.

  • Chellappan SP, Hiebert S, Mudryj M, Horowitz JM, Nevins JR . (1991). Cell 65: 1053–1061.

  • Crawford L, Harlow E . (1982). J Virol 41: 709.

  • Das D, Shah RB, Imperiale MJ . (2004). Oncogene 23: 7031–7046.

  • DeCaprio JA, Ludlow JW, Figge J, Shew JY, Huang CM, Lee WH et al. (1988). Cell 54: 275–283.

  • Duensing S, Lee LY, Duensing A, Basile J, Piboonniyom S, Gonzalez S et al. (2000). Proc Natl Acad Sci USA 97: 10002–10007.

  • El-Osta A, Wolffe AP . (2000). Gene Exp 9: 63–75.

  • Etoh T, Kanai Y, Ushijima S, Nakagawa T, Nakanishi Y, Sasako M et al. (2004). Am J Pathol 164: 689–699.

  • Feltus FA, Lee EK, Costello JF, Plass C, Vertino PM . (2003). Proc Natl Acad Sci USA 100: 12253–12258.

  • Gardiner-Garden M, Frommer M . (1987). J Mol Biol 196: 261–282.

  • Goorha R, Granoff A, Willis DB, Murti KG . (1984). Virology 138: 94–102.

  • Gunthert U, Schweiger M, Stupp M, Doerfler W . (1976). Proc Natl Acad Sci USA 73: 3923–3927.

  • Harlow E, Crawford LV, Pim DC, Williamson NM . (1981). J Virol 39: 861–869.

  • Harris KF, Christensen JB, Imperiale MJ . (1996). J Virol 70: 2378–2386.

  • Harris KF, Christensen JB, Radany EH, Imperiale MJ . (1998). Mol Cell Biol 18: 1746–1756.

  • Heller H, Kammer C, Wilgenbus P, Doerfler W . (1995). Proc Natl Acad Sci USA 92: 5515–5519.

  • Hermann A, Gowher H, Jeltsch A . (2004). Cell Mol Life Sci 61: 2571–2587.

  • Hiebert SW, Lipp M, Nevins JR . (1989). Proc Natl Acad Sci USA 86: 3594–3598.

  • Hohlweg U, Hosel M, Dorn A, Webb D, Hilger-Eversheim K, Remus R et al. (2003). Virus Res 98: 45–56.

  • Humes HD, Fissell WH, Weitzel WF, Buffington DA, Westover AJ, MacKay SM et al. (2002). Am J Kidney Dis 39: 1078–1087.

  • Ishida S, Huang E, Zuzan H, Spang R, Leone G, West M et al. (2001). Mol Cell Biol 21: 4684–4699.

  • Jarrard DF, Paul R, van Bokhoven A, Nguyen SH, Bova GS, Wheelock MJ et al. (1997). Clin Cancer Res 3: 2121–2128.

  • Johnson-Thompson M, Albury D . (1988). In vitro Cell Dev Biol 24: 1114–1120.

  • Johnson DG, Schwarz JK, Cress WD, Nevins JR . (1993). Nature 365: 349–352.

  • Kaye AM, Winocour E . (1967). J Mol Biol 24: 475–478.

  • Khalili K, Del Valle L, Otte J, Weaver M, Gordon J . (2003). Oncogene 22: 5181–5191.

  • Kochanek S, Renz D, Doerfler W . (1993). EMBO J 12: 1141–1151.

  • Low J, Humes HD, Szczypka M, Imperiale M . (2004). Virology 323: 182–188.

  • Ma Y, Croxton R, Moorer Jr RL, Cress WD . (2002). Arch Biochem Biophys 399: 212–224.

  • MacLeod AR, Szyf M . (1995). J Biol Chem 270: 8037–8043.

  • McCabe MT, Davis JN, Day ML . (2005). Cancer Res 65: 3624–3632.

  • McCormick F, Clark R, Harlow E, Tjian R . (1981). Nature 292: 63–65.

  • Mikovits JA, Young HA, Vertino P, Issa JP, Pitha PM, Turcoski-Corrales S et al. (1998). Mol Cell Biol 18: 5166–5177.

  • Moran E . (1988). Nature 334: 168–170.

  • Munger K . (2002). Front Biosci 7: d641–d649.

  • Nakshatri H, Pater MM, Pater A . (1988). J Virol 62: 4613–4621.

  • O'Shea CC . (2005). Curr Opin Genet Dev 15: 18–26.

  • Peterson EJ, Bogler O, Taylor SM . (2003). Cancer Res 63: 6579–6582.

  • Pipas JM . (1992). J Virol 66: 3979–3985.

  • Ray FA, Peabody DS, Cooper JL, Cram LS, Kraemer PM . (1990). J Cell Biochem 42: 13–31.

  • Remus R, Kammer C, Heller H, Schmitz B, Schell G, Doerfler W . (1999). J Virol 73: 1010–1022.

  • Ren B, Cam H, Takahashi Y, Volkert T, Terragni J, Young RA et al. (2002). Genes Dev 16: 245–256.

  • Rhodes DR, Kalyana-Sundaram S, Mahavisno V, Barrette TR, Ghosh D, Chinnaiyan AM . (2005). Nat Genet 37: 579–583.

  • Sage J, Mulligan GJ, Attardi LD, Miller A, Chen S, Williams B et al. (2000). Genes Dev 14: 3037–3050.

  • Santin AD, Zhan F, Bignotti E, Siegel ER, Cane S, Bellone S et al. (2005). Virology 331: 269–291.

  • Shivapurkar N, Takahashi T, Reddy J, Zheng Y, Stastny V, Collins R et al. (2004). Cancer Res 64: 3757–3760.

  • Sinclair AJ, Palmero I, Holder A, Peters G, Farrell PJ . (1995). J Virol 69: 1292–1295.

  • Slack A, Cervoni N, Pinard M, Szyf M . (1999). J Biol Chem 274: 10105–10112.

  • Sutter D, Doerfler W . (1980). Proc Natl Acad Sci USA 77: 253–256.

  • Suzuki M, Toyooka S, Shivapurkar N, Shigematsu H, Miyajima K, Takahashi T et al. (2005). Oncogene 24: 1302–1308.

  • Syrjanen SM, Syrjanen KJ . (1999). Ann Med 31: 175–187.

  • Tognon M, Corallini A, Martini F, Negrini M, Barbanti-Brodano G . (2003). Oncogene 22: 5192–5200.

  • Toyooka KO, Toyooka S, Virmani AK, Sathyanarayana UG, Euhus DM, Gilcrease M et al. (2001a). Cancer Res 61: 4556–4560.

  • Toyooka S, Pass HI, Shivapurkar N, Fukuyama Y, Maruyama R, Toyooka KO et al. (2001b). Cancer Res 61: 5727–5730.

  • Trabanelli C, Corallini A, Gruppioni R, Sensi A, Bonfatti A, Campioni D et al. (1998). Virology 243: 492–496.

  • Tsai CN, Tsai CL, Tse KP, Chang HY, Chang YS . (2002). Proc Natl Acad Sci USA 99: 10084–10089.

  • Vertino PM, Yen RW, Gao J, Baylin SB . (1996). Mol Cell Biol 16: 4555–4565.

  • Vilchez RA, Butel JS . (2004). Clin Microbiol Rev 17: 495–508, table of contents.

  • Yoder JA, Walsh CP, Bestor TH . (1997). Trends Genet 13: 335–340.

  • Yoshikawa H, Matsubara K, Qian GS, Jackson P, Groopman JD, Manning JE et al. (2001). Nat Genet 28: 29–35.

Download references

Acknowledgements

We thank Tyler Jacks, Nephros Therapeutics (Ann Arbor, MI, USA), Erik Knudsen, Elizabeth Moran and Ed Harlow for providing cells, plasmids or antibodies utilized in this study. Grant support: DK61488 from the National Institutes of Health (MLD.), AI060584 from the National Institutes of Health (MJI), and 5T32 CA09676 Cancer Biology Training Fellowship from the National Institutes of Health (MTM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M L Day.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCabe, M., Low, J., Imperiale, M. et al. Human polyomavirus BKV transcriptionally activates DNA methyltransferase 1 through the pRb/E2F pathway. Oncogene 25, 2727–2735 (2006). https://doi.org/10.1038/sj.onc.1209266

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209266

Keywords

This article is cited by

Search

Quick links