Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Targeted disruption of the mouse ing1 locus results in reduced body size, hypersensitivity to radiation and elevated incidence of lymphomas

Abstract

Ing1 belongs to the family of evolutionary conserved genes encoding nuclear PHD finger-containing proteins implicated in a variety of processes, including tumorigenesis, replicative senescence, excision repair and response to genotoxic stress. We have generated mice deficient in all the isoforms of Ing1 by targeted disruption of the exon that is common for all ing1 transcripts. Embryonic fibroblasts from ing1-knockout mice were similar to the wild-type cells in their growth characteristics, replicative lifespan in culture, p53 induction and sensitivity to various cytotoxic treatments with minor alterations in cell cycle distribution in response to genotoxic stress. ing1-deficient animals are characterized by reduced size with no obvious morphological, physiological or behavioral abnormalities, indicating that ing1 function is dispensable for the viability of mice under normal physiological conditions. Loss of ing1 was associated with earlier onset and higher incidence of lymphomas. Consistent with the possible involvement of Ing1 in DNA repair, ing1-deficient mice were more sensitive to total body gamma radiation. Our observations are well in line with the suggested role of ing1 as a candidate tumor suppressor gene involved in control of DNA damage response.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Campos EI, Cheung Jr KJ, Murray A, Li S, Li G . (2002). Br J Dermatol 146: 574–580.

  • Campos EI, Chin MY, Kuo WH, Li G . (2004a). Cell Mol Life Sci 61: 2597–2613.

  • Campos EI, Martinka M, Mitchell DL, Dai DL, Li G . (2004b). Int J Oncol 25: 73–80.

  • Chen L, Matsubara N, Yoshino T, Nagasaka T, Hoshizima N, Shirakawa Y et al. (2001). Cancer Res 61: 4345–4349.

  • Cheung Jr KJ, Bush JA, Jia W, Li G . (2000). Br J Cancer 83: 1468–1472.

  • Cheung Jr KJ, Li G . (2002). Exp Cell Res 279: 291–298.

  • Cheung Jr KJ, Mitchell D, Lin P, Li G . (2001). Cancer Res 61: 4974–4977.

  • Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery Jr CA, Butel JS et al. (1992). Nature 356: 215–221.

  • el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM et al. (1993). Cell 75: 817–825.

  • Garkavtsev I, Demetrick D, Riabowol K . (1997). Cytogenet Cell Genet 76: 176–178.

  • Garkavtsev I, Grigorian IA, Ossovskaya VS, Chernov MV, Chumakov PM, Gudkov AV . (1998). Nature 391: 295–298.

  • Garkavtsev I, Kazarov A, Gudkov A, Riabowol K . (1996). Nat Genet 14: 415–420.

  • Garkavtsev I, Kozin SV, Chernova O, Xu L, Winkler F, Brown E et al. (2004). Nature 428: 328–332.

  • Garkavtsev I, Riabowol K . (1997). Mol Cell Biol 17: 2014–2019.

  • Gunduz M, Ouchida M, Fukushima K, Hanafusa H, Etani T, Nishioka S et al. (2000). Cancer Res 60: 3143–3146.

  • Gunduz M, Ouchida M, Fukushima K, Ito S, Jitsumori Y, Nakashima T et al. (2002). Oncogene 21: 4462–4470.

  • He GH, Helbing CC, Wagner MJ, Sensen CW, Riabowol K . (2005). Mol Biol Evol 22: 104–116.

  • Helbing CC, Veillette C, Riabowol K, Johnston RN, Garkavtsev I . (1997). Cancer Res 57: 1255–1258.

  • Ito K, Kinjo K, Nakazato T, Ikeda Y, Kizaki M . (2002). Am J Hematol 69: 141–143.

  • Kichina JV, Rauth S, Das Gupta TK, Gudkov AV . (2003). Oncogene 22: 4911–4917.

  • Kiyokawa H, Kineman RD, Manova-Todorova KO, Soares VC, Hoffman ES, Ono M et al. (1996). Cell 85: 721–732.

  • Komarov PG, Komarova EA, Kondratov RV, Christov-Tselkov K, Coon JS, Chernov MV et al. (1999). Science 285: 1733–1737.

  • Komarova EA, Kondratov RV, Wang K, Christov K, Golovkina TV, Goldblum JR et al. (2004). Oncogene 23: 3265–3271.

  • Kuzmichev A, Zhang Y, Erdjument-Bromage H, Tempst P, Reinberg D . (2002). Mol Cell Biol 22: 835–848.

  • Leung KM, Po LS, Tsang FC, Siu WY, Lau A, Ho HT et al. (2002). Cancer Res 62: 4890–4893.

  • Loewith R, Meijer M, Lees-Miller SP, Riabowol K, Young D . (2000). Mol Cell Biol 20: 3807–3816.

  • Maestro R, Piccinin S, Doglioni C, Gasparotto D, Vukosavljevic T, Sulfaro S et al. (1996). Cancer Res 56: 1146–1150.

  • Nagashima M, Shiseki M, Miura K, Hagiwara K, Linke SP, Pedeux R et al. (2001). Proc Natl Acad Sci USA 98: 9671–9676.

  • Nouman GS, Angus B, Lunec J, Crosier S, Lodge A, Anderson JJ . (2002). Hybrid Hybridomics 21: 1–10.

  • Ohgi T, Masaki T, Nakai S, Morishita A, Yukimasa S, Nagai M et al. (2002). Scand J Gastroenterol 37: 1440–1448.

  • Ohmori M, Nagai M, Tasaka T, Koeffler HP, Toyama T, Riabowol K et al. (1999). Am J Hematol 62: 118–119.

  • Oki E, Maehara Y, Tokunaga E, Kakeji Y, Sugimachi K . (1999). Cancer Lett 147: 157–162.

  • Ramirez-Solis R, Bradley A . (1994). Curr Opin Biotechnol 5: 528–533.

  • Saito A, Furukawa T, Fukushige S, Koyama S, Hoshi M, Hayashi Y et al. (2000). J Hum Genet 45: 177–181.

  • Sanchez-Cespedes M, Okami K, Cairns P, Sidransky D . (2000). Genes Chromosomes Cancer 27: 319–322.

  • Sarela AI, Farmery SM, Markham AF, Guillou PJ . (1999). Eur J Cancer 35: 1264–1267.

  • Scott M, Boisvert FM, Vieyra D, Johnston RN, Bazett-Jones DP, Riabowol K . (2001a). Nucleic Acids Res 29: 2052–2058.

  • Scott M, Bonnefin P, Vieyra D, Boisvert FM, Young D, Bazett-Jones DP et al. (2001b). J Cell Sci 114: 3455–3462.

  • Shimada H, Liu TL, Ochiai T, Shimizu T, Haupt Y, Hamada H et al. (2002). Oncogene 21: 1208–1216.

  • Shinoura N, Muramatsu Y, Nishimura M, Yoshida Y, Saito A, Yokoyama T et al. (1999). Cancer Res 59: 5521–5528.

  • Skowyra D, Zeremski M, Neznanov N, Li M, Choi Y, Uesugi M et al. (2001). J Biol Chem 276: 8734–8739.

  • Swiatek PJ, Gridley T . (1993). Genes Dev 7: 2071–2084.

  • Tokunaga E, Maehara Y, Oki E, Kitamura K, Kakeji Y, Ohno S et al. (2000). Cancer Lett 152: 15–22.

  • Toyama T, Iwase H, Watson P, Muzik H, Saettler E, Magliocco A et al. (1999). Oncogene 18: 5187–5193.

  • Vieyra D, Loewith R, Scott M, Bonnefin P, Boisvert FM, Cheema P et al. (2002). J Biol Chem 277: 29832–29839.

  • Ward JM, Anver MR, Mahler JF, Devor-Henneman DE . (2000). Pathology of Genetically Engineered Mice. Ward JM, Mahler JF, Maronpot RR, Sundberg JP (eds). Iowa State University Press: Ames, pp. 161–179.

    Google Scholar 

  • Zeremski M, Hill JE, Kwek SS, Grigorian IA, Gurova KV, Garkavtsev IV et al. (1999). J Biol Chem 274: 32172–32181.

  • Zeremski M, Horrigan SK, Grigorian IA, Westbrook CA, Gudkov AV . (1997). Somat Cell Mol Genet 23: 233–236.

Download references

Acknowledgements

We thank James Artwohl for help in animal experiments and Natalia Tararova for assistance in FACS analysis. This work was supported by grants from NIH CA60730 and CA17579 to AVG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A V Gudkov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kichina, J., Zeremski, M., Aris, L. et al. Targeted disruption of the mouse ing1 locus results in reduced body size, hypersensitivity to radiation and elevated incidence of lymphomas. Oncogene 25, 857–866 (2006). https://doi.org/10.1038/sj.onc.1209118

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209118

Keywords

This article is cited by

Search

Quick links