Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Role of FLASH in caspase-8-mediated activation of NF-κB: dominant-negative function of FLASH mutant in NF-κB signaling pathway

Abstract

Caspase-8 is the most receptor-proximal, upstream caspase in the caspase cascade and plays a key role in cell death triggered by various death receptors. Here, we addressed the role of endogenous caspase-8 in tumor necrosis factor (TNF)-α-induced activation of NF-κB. Direct targeting of caspase-8 with siRNA and antisense (AS) approaches abolished TNF-α-induced activation of NF-κB in NIH3T3, HeLa, and HEK293 cells as determined with luciferase reporter gene and cell fractionation assays. Reconstitution of caspase-8-deficient C33A cells with processing-defective (P/D) mutant of caspase-8 sensitized the cells to TNF-α for NF-κB activation. In contrast to wild-type caspase-8, death effector domain mutant replacing Asp73 with Ala (caspase-8 (D73A)) failed to activate NF-κB and to bind FLICE-associated huge protein (FLASH) in vitro and in vivo. Instead, caspase-8 (D73A) mutant bound to caspase-8 and blocked NF-κB activation triggered by TNF-α and caspase-8. In addition, expression of an NF-κB-activating domain-deletion mutant of FLASH or transfection of FLASH AS oligonucleotides abolished TNF-α and caspase-8, but not phorbol 12-myristate 13-acetate, -induced activation of NF-κB. Further, immunoprecipitation assays showed that caspase-8 formed triple complex with TRAF2 and FLASH. Taken together, these results suggest that endogenous caspase-8 mediates TNF-α-induced activation of NF-κB via FLASH.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Baud V and Karin M . (2001). Trends Cell Biol., 11, 372–377.

  • Beg AA and Baltimore D . (1996). Science, 274, 782–784.

  • Boldin MP, Mett IL, Varfolomeev EE, Chumakov I, Avni YS, Camonis JH and Wallach D . (1995). J. Biol. Chem., 270, 387–391.

  • Bradley JR and Pober JS . (2001). Oncogene, 20, 6483–6491.

  • Brummelkamp TR, Bernards R and Agami R . (2002). Science, 296, 550–553.

  • Cao Z, Xiong J, Takeuchi M, Kurama T and Goeddel DV . (1996). Nature, 383, 443–446.

  • Chaudhary PM, Eby MT, Jasmin A, Kumar A, Liu L and Hood L . (2000). Oncogene, 19, 4451–4460.

  • Chinnaiyan A, O'Rourke K, Tewari M and Dixit VM . (1995). Cell, 81, 505–512.

  • Choi C, Kutsch O, Park J, Zhou T, Seol DW and Benveniste EN . (2002). Mol. Cell. Biol., 22, 724–736.

  • Choi YH, Kim KB, Kim HH, Hong GS, Kwon YK, Chung CW, Park YM, Shen ZJ, Kim BJ, Lee SY and Jung YK . (2001). J. Biol. Chem., 276, 25073–25077.

  • Chun HJ, Zheng L, Ahmad M, Wang J, Speirs CK, Siegel RM, Dale JK, Puck J, Davis J, Hall CG, Skoda-Smith S, Atkinson TP, Straus SE and Lenardo MJ . (2002). Nature, 419, 395–399.

  • Chung CW, Song YH, Kim IK, Yoon WJ, Ryu BR, Jo DG, Woo HN, Kwon YK, Kim HH, Gwag BJ, Mook-Jung IH and Jung YK . (2001). Neurobiol. Dis., 8, 162–172.

  • Grell M, Zimmermann G, Gottfried E, Chen CM, Grunward U, Huang DCS, Lee YHW, Durkop H, Engelmann H, Scheurich PW and Strasser A . (1999). EMBO J., 18, 3034–3043.

  • Guiet C, Silvestri E, De Smaele E, Franzoso G and Vito P . (2002). Cell Death Differ., 9, 138–144.

  • Hsu H, Huang J, Shu HB, Baichwal V and Goeddel DV . (1996b). Immunity, 4, 387–396.

  • Hsu H, Shu HB, Pan MG and Goeddel DV . (1996a). Cell, 84, 299–308.

  • Hsu H, Xiong J and Goeddel DV . (1995). Cell, 81, 495–504.

  • Hu WH, Johnson H and Shu HB . (2000). J. Biol. Chem., 275, 10838–10844.

  • Imai Y, Kimura T, Murakami A, Yajima N, Sakamaki K and Yonehara S . (1999). Nature, 398, 777–785.

  • Inoara N, Koseki T, Lin J, del Peso L, Lucas PC, Chen FF, Ogura Y and Nunez G . (2000). J. Biol. Chem., 275, 21823–27831.

  • Ishida T, Mizushima S, Azuma S, Kobayashi N, Tojo T, Suzuki K, Aizawa S, Watanabe T, Mosialos G, Kieff E, Yamamoto T and Inoue J . (1996a). J. Biol. Chem., 271, 28745–28748.

  • Ishida T, Tojo T, Aoki T, Kobayashi N, Ohishi T, Watanabe T, Yamamoto T and Inoue J . (1996b). Proc. Natl. Acad. Sci. USA, 93, 9437–9442.

  • Ito Y, Pandey P, Sporn MB, Datta R, Kharbanda S and Kufe D . (2001). Mol. Pharmacol., 59, 1094–1099.

  • Kim IK, Chung CW, Woo HN, Hong GS, Nakata S and Jung YK . (2000). Biochem. Biophys. Res. Commun., 277, 311–316.

  • Kreuz S, Siegmund D, Scheurich P and Wajant H . (2001). Mol. Cell. Biol., 12, 3964–3973.

  • LaCasse EC, Baird S, Korneluk RG and MacKenzie AE . (1998). Oncogene, 17, 3247–3259.

  • Liu ZG, Hsu H, Goeddel DV and Karin M . (1996). Cell, 87, 565–576.

  • Locksley RM, Killeen N and Lenardo MJ . (2001). Cell, 104, 487–501.

  • Mercurio F, Zhu H, Murray BW, Shevchenko A, Bennett BL, Li JW, Young DB, Barbosa M, Mann M, Manning A and Rao A . (1997). Science, 278, 860–866.

  • Micheau O, Lens S, Gaide O, Alevizopoulos K and Tschopp J . (2001). Mol. Cell. Biol., 16, 5299–5305.

  • Micheau O and Tschopp J . (2003). Cell, 114, 181–190.

  • Nagata S . (1999). Annu. Rev. Genet., 33, 29–55.

  • Newton K, Harris AW, Bath ML, Smith KGC and Strasser A . (1998). EMBO J., 17, 706–718.

  • Newton K, Kurts C, Harris AW and Strasser A . (2001). Curr. Biol., 11, 273–276.

  • Rothe M, Sarma V, Dixit VM and Goeddel DV . (1995). Science, 269, 1424–1427.

  • Shikama Y, Yamada M and Miyashita T . (2003). Eur. J. Immunol., 33, 1998–2003.

  • Sprick MR, Weigand MA, Rieser E, Rauch CT, Juo P, Blenis J, Krammer PH and Walczak H . (2000). Immunity, 12, 599–609.

  • Tracey KJ and Cerami A . (1993). Annu. Rev. Cell Biol., 9, 317–343.

  • Vandenabeele P, Declercq W, Beyarert R and Fiers W . (1995). Trends Cell Biol., 5, 392–399.

  • Varfolomeev EE, Schuchmann M, Luria V, Chiannilkulchai N, Beckmann JS, Mett IL, Rebrikov D, Brodianski VM, Kemper OC, Kollet O, Lapidot T, Soffer D, Sobe T, Avraham KB, Goncharov T, Holtmann H, Lonai P and Wallach D . (1998). Immunity, 9, 267–276.

  • Wang CY, Mayo MW, Korneluk RG, Goeddel DV and Baldwin Jr AS . (1998). Science, 281, 1680–1683.

  • Woronicz JD, Gao X, Cao Z, Rothe M and Goeddel DV . (1997). Science, 278, 866–870.

  • Zandi E, Rothwarf DM, Delhase M, Hayakawa M and Karin M . (1997). Cell, 91, 243–252.

Download references

Acknowledgements

We thank Dr P Chaudhary (University of Texas, USA) for caspase-8 (D73A) mutant expression plasmid. J Jun was partially supported by the Brain Korea 21 project. This work was supported by National Research Laboratory program (to YK Jung), 21 C Frontier on Functional Genomics and Brain of the Korean Ministry of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Keun Jung.

Additional information

Supplementary Information accompanies the paper on Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jun, JI., Chung, CW., Lee, HJ. et al. Role of FLASH in caspase-8-mediated activation of NF-κB: dominant-negative function of FLASH mutant in NF-κB signaling pathway. Oncogene 24, 688–696 (2005). https://doi.org/10.1038/sj.onc.1208186

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1208186

Keywords

This article is cited by

Search

Quick links