Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Glucocorticoid receptor functions as a potent suppressor of mouse skin carcinogenesis

Abstract

Glucocorticoids are effective inhibitors of epidermal proliferation and skin tumorigenesis. Glucocorticoids affect cellular functions via glucocorticoid receptor (GR), a well-known transcription factor. Recently, we generated skin-targeted transgenic mice overexpressing GR under control of the keratin5 promoter (K5-GR mice). To test the hypothesis that GR plays a role as a tumor suppressor in skin, we bred K5-GR transgenic mice with Tg.AC transgenic mice, which express v-Ha-ras oncogene in the skin, and compared the susceptibility of F1 offspring to TPA-induced skin carcinogenesis. GR overexpression in the epidermis dramatically inhibited skin tumor development. In K5-GR/ras+ double transgenic mice papillomas developed later and the average number of tumors per animal was 15% (in males) and 40% (in females) of the number seen in wild type (w.t./ras+) littermates. In addition, the papillomas in w.t./ras+ animals were eight to nine times larger. GR overexpression resulted in a decrease in keratinocyte proliferation combined with a modest increase in apoptosis and differentiation of keratinocytes in K5-GR/ras+ papillomas. Our data clearly indicate that interference of GR transgenic protein with nuclear factor kappa B (NF-κB) transcription factor had resulted in NF-κB blockage in K5-GR/ras+ tumors. We discuss the role of NF-κB blockage in tumor-suppressor effect of GR.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 4
Figure 2
Figure 3
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

B6D2:

F1 C57B1 × DBA mice

BrdU:

bromodeoxyuridine

CDK:

cyclin-dependent kinase

DMBA:

7,12-dimethylbenz[a]-anthracene

GR:

glucocorticoid receptor

GRE:

glucocorticoid response element

IκB:

inhibitory proteins of NF-κB

Mt1:

metallothionein 1

NF-κB:

nuclear factor kappa B

TPA:

12-O-tetradecanoyl-phorbol-13-acetate

References

  • Adcock IM . (2001). Pulm. Pharmacol. Ther., 14, 211–219.

  • Barkett M and Gilmore TD . (1999). Oncogene, 18, 6910–6924.

  • Battalora MS, Spalding JW, Szczesniak CJ, Cape JE, Morris RJ, Trempus CS, Bortner CD, Lee BM and Tennant RW . (2001). Carcinogenesis, 22, 651–659.

  • Beato M, Herrlich P and Schultz G . (1995). Cell, 83, 851–857.

  • Binder RL, Johnson GR, Gallagher PM, Stockman SL, Sundberg JP and Conti CJ . (1998). Cancer Res., 58, 4314–4323.

  • Budunova IV, Carbajal S, Kang H, Viaje A and Slaga TJ . (1997). Mol. Carcinogen., 18, 177–185.

  • Budunova IV, Pérez P, Vaden VR, Spiegelman VS, Slaga TJ, Jorcano JL . (1999). Oncogene, 18, 7423–7431.

  • Cannon RE, Spalding JW, Trempus CS, Szczesniak CJ, Virgil KM, Humble MC and Tennant RW . (1997). Mol. Carcinogen., 20, 108–114.

  • Cannon RE, Spalding JW, Virgil KM, Faircloth RS, Humble MC, Lacks GD and Tennant RW . (1998). Mol. Carcinogen., 21, 244–250.

  • Cha HH, Cram EJ, Wang EC, Huang AJ, Kasler HG and Firestone GL . (1998). J. Biol. Chem., 273, 1998–2007.

  • DiGiovanni J, Imamoto A, Naito M, Walker SE, Beltran L, Chenicek KJ and Skow L . (1992). Carcinogenesis, 13, 525–531.

  • DiGiovanni J, Kruszewski FH and Chenicek KJ . (1988). Carcinogenesis, 9, 1445–1450.

  • Distelhorst CW . (2002). Cell Death Differ., 9, 6–19.

  • Finco TS, Westwick JK, Norris JL, Beg AA, Der CJ and Baldwin Jr AS . (1997). J. Biol. Chem., 272, 24113–24116.

  • Fischer SM, Jasheway DW, Klann RC, Butler AP, Patrick KE, Baldwin JK and Cameron GS . (1989). Cancer Res., 49, 6693–6699.

  • Greenstein S, Ghias K, Krett NL and Rosen ST . (2002). Clin. Cancer Res., 8, 1681–1694.

  • Guttridge DC, Albanese C, Reuther JY, Pestell RG and, Baldwin Jr AS . (1999). Mol. Cell. Biol., 19, 5785–5799.

  • Hansen LA and Tennant RW . (1994). Mol. Carcinogen., 9, 143–154.

  • Hennings H . (1987). Multistep Models of Carcinogenesis. Barrett JC (ed). CRC Press: Boca Raton, FL, pp. 59–71.

    Google Scholar 

  • Honchel R, Rosenzweig BA, Thompson KL, Blanchard KT, Furst SM, Stoll RE and Sistare FD . (2001) Mol. Carcinogen., 30, 99–110.

  • Jehn BM and Osborne BA . (1997). Crit. Rev. Eukaryot. Gene Expression, 7, 179–193.

  • Jo H, Zhang R, Zhang H, McKinsey TA, Shao J, Beauchamp RD, Ballard DW and Liang P . (2000). Oncogene, 19, 841–849.

  • Larcher F, Murillas R, Bolontrade M, Conti CJ and Jorcano JL . (1998). Oncogene, 17, 303–311.

  • Ma S, Rao L, Freedberg IM and Blumenberg M . (1997). Gene Expression, 6, 361–370.

  • Mayo MW, Norris JL and Baldwin AS . (2001). Methods Enzymol., 333, 73–87.

  • Mayo MW, Wang CY, Cogswell PC, Rogers-Graham KS, Lowe SW, Der CJ and Baldwin AS . (1997). Science, 278, 1812–5181.

  • Morris RJ . (2000). J. Clin. Invest., 106, 3–8.

  • Naito M, Chenicek KJ, Naito Y and DiGiovanni J . (1988). Carcinogenesis, 9, 639–645.

  • Nalca A, Qiu SG, El-Guendy N, Krishnan S and Rangnekar VM . (1999). J. Biol. Chem., 274, 29976–29983.

  • Nesnow S, Bergman H and Slaga TJ . (1986). Environ. Health Perspect., 68, 19–25.

  • Park JH, Oh EJ, Choi YH, Kang CD, Kang HS, Kim DK, Kang KI and Yoo MA . (2001). Int. J. Oncol., 18, 997–1002.

  • Pérez P, Page A, Bravo A, Del Rio M, Gimenez-Conti I, Budunova I, Slaga TJ and Jorcano JL . (2001). FASEB J., 15, 2030–2032.

  • Pérez P, Page A and Jorcano JL . (2000). Mol. Carcinogen., 27, 272–279.

  • Pruitt K and Der CJ . (2001). Cancer Lett., 171, 1–10.

  • Radoja N, Komine M, Jho SH, Blumenberg M and Tomic-Canic M . (2000). Mol. Cell. Biol., 20, 4328–4339.

  • Ramalingam A, Hirai A and Thompson EA . (1997). Mol. Endocrinol., 11, 577–586.

  • Reichardt HM, Tuckermann JP, Gottlicher M, Vujic M, Weih F, Angel P, Herrlich P and Schutz G . (2001). EMBO J., 20, 7168–7173.

  • Robles AI and Conti CJ . (1995). Carcinogenesis, 16, 781–786.

  • Robles AI, Rodriguez-Puebla ML, Glick AB, Trempus C, Hansen L, Sicinski P, Tennant RW, Weinberg RA, Yuspa SH and Conti CJ . (1998). Genes Dev., 12, 2469–2474.

  • Rogatsky I, Hittelman AB, Pearce D and Garabedian MJ . (1999). Mol. Cell Biol., 19, 5036–5049.

  • Rogatsky I, Trowbridge JM and Garabedian MJ . (1997). Mol. Cell Biol., 17, 3181–3193.

  • Samuelsson MK, Pazirandeh A, Davani B and Okret S . (1999). Mol. Endocrinol., 13, 1811–1822.

  • Scheinman RI, Gualberto A, Jewell CM, Cidlowski JA and Baldwin AS . (1995). Mol. Cell Biol., 15, 943–953.

  • Schwarz JA, Viaje A and Slaga TJ . (1977). Chem-Biol. Interact., 17, 331–347.

  • Slaga TJ . (1984). Models, Mechanisms and Etiology of Tumor Promotion. Börzönyi M, Day NE and Lapis K (eds). IARC Scientific Publications: Lyon, pp. 497–509.

    Google Scholar 

  • Slaga TJ, Budunova IV, Gimenez-Conti IB and Aldaz CM . (1996). J. Invest. Dermatol. Symp. Proc., 1, 151–156.

  • Smith E, Redman RA, Logg CR, Coetzee GA, Kasahara N and Frenkel B . (2000). J. Biol. Chem., 275, 19992–20001.

  • Smith MK, Trempus CS and Gilmour SK . (1998). Carcinogenesis, 19, 1409–1415.

  • Spalding JW, Momma J, Elwell MR and Tennant RW . (1993). Carcinogenesis, 14, 1335–1341.

  • Spiegelman VS, Budunova IV, Carbajal S and Slaga TJ . (1997). Mol. Carcinogen., 20, 99–107.

  • Strawhecker JM and Pelling JC . (1992). Carcinogenesis, 13, 2075–2080.

  • Takuwa N and Takuwa Y . (2001). Mol. Cell Endocrinol., 177, 25–33.

  • Terada Y, Okado T, Inoshita S, Hanada S, Kuwahara M, Sasaki S, Yamamoto T and Marumo F . (2001). Kidney Int., 59, 1706–1716.

  • Thompson KL, Rosenzweig BA and Sistare FD . (1998). Toxicol. Pathol., 26, 548–555.

  • Tuckermann JP, Reichardt HM, Arribas R, Richter KH, Schutz G and Angel P . (1999). J. Cell Biol., 147, 1365–1370.

  • Verma AK, Garcia CT, Ashendel CL and Boutwell RK . (1983). Cancer Res., 43, 3045–3049.

Download references

Acknowledgements

We thank Dr R Cannon for his generous gift of reagents, technical support and valuable comments, Dr R Strange for his critical suggestions and P Wolfe for statistical analysis of data. We acknowledge Dr C Conti and Dr A Bravo for their help with histopathological diagnosis of tumors. This study was supported by NIH grant RO1-CA-79065-01 and partially by grant SAF2002-04368-C02-01 from the Spanish Ministry of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina V Budunova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Budunova, I., Kowalczyk, D., Pérez, P. et al. Glucocorticoid receptor functions as a potent suppressor of mouse skin carcinogenesis. Oncogene 22, 3279–3287 (2003). https://doi.org/10.1038/sj.onc.1206383

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1206383

Keywords

This article is cited by

Search

Quick links