Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Deregulated c-Myc prematurely recruits both Type I and II CD95/Fas apoptotic pathways associated with terminal myeloid differentiation

Abstract

Previously we have reported that deregulated expression of c-myc in normal and leukemic myeloid cells blocked differentiation and, concomitantly, induced p53-independent apoptosis. Here, we show that this morbidity was due to premature recruitment of the Fas/CD95 cell death pathway which normally operates to induce apoptosis at the end of the terminal myeloid differentiation program. Analysis of the regulated components of this pathway revealed that IL6-mediated induction of differentiation resulted in rapid cell surface expression of CD95 receptor. Deregulated c-myc prevented the downregulation of CD95 ligand by maintaining its transcription, but caused premature downregulation of c-FLIP. First, the Type II (mitochondria-dependent, bcl-2-sensitive) and, then, the Type I (mitochondria-independent, bcl-2-insensitive) pathway were activated. Stable exogenous c-FLIP expression completely rescued the apoptotic phenotype. Furthermore, when the deregulated c-myc transgene was stably transduced into bone marrow cells from Faslpr/lpr (CD95 receptor mutant) and FasLgld/gld (CD95 ligand mutant) mice, cell death was significantly suppressed relative to c-myc-transduced wild type bone marrow cells upon induction of differentiation. These data indicate that c-myc-mediated apoptosis associated with blocks in myeloid differentiation is dependent on the Fas/CD95 pathway. Our findings offer important new insights into understanding how deregulated c-myc alters normal blood cell homeostasis, and how additional mutations might promote leukemogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Amanullah A, Liebermann DA, Hoffman B . 2000 Oncogene 19: 2967–2977

  • Ariga H, Imamura Y, Iguchi-Ariga SM . 1989 EMBO J. 8: 4273–4279

  • Ashkenazi A, Dixit VM . 1998 Science 281: 1305–1308

  • Boldin MP, Goncharov TM, Goltsev YV, Wallach D . 1996 Cell 85: 803–815

  • Boldin MP, Varfolomeev EE, Pancer Z, Mett IL, Camonis JH, Wallach D . 1995 J. Biol. Chem. 270: 7795–7798

  • Brunner T, Kasibhatla S, Pinkoski MJ, Frutschi C, Yoo NJ, Echeverri F, Mahboubi A, Green DR . 2000 J. Biol. Chem. 275: 9767–9772

  • Chinnaiyan AM, O'Rourke K, Tewari M, Dixit VM . 1995 Cell 81: 505–512

  • Eilers M . 1999 Mol. Cells 9: 1–6

  • Eischen CM, Woo D, Roussel MF, Cleveland JL . 2001 Mol. Cell. Biol. 15: 5063–5070

  • Facchini LM, Penn LZ . 1998 FASEB J. 12: 633–651

  • Fecho K, Bentley SA, Cohen PL . 1998 Cell Immunol. 188: 19–32

  • Freytag SO . 1988 Mol. Cell. Biol. 8: 1614–1624

  • Genestier L, Kasibhatla S, Brunner T, Green DR . 1999 J. Exp. Med. 189: 231–239

  • Gross A, McDonnell JM, Korsmeyer SJ . 1999 Genes Dev. 13: 1899–1911

  • Hann SR, Dixit M, Sears RC, Sealy L . 1994 Genes Dev. 8: 2441–2452

  • Harwood FG, Kasibhatla S, Petak I, Vernes R, Green DR, Houghton JA . 2000 J. Biol. Chem. 275: 10023–10029

  • Hoffman-Liebermann B, Liebermann DA . 1991a Mol. Cell. Biol. 11: 2375–2381

  • Hoffman-Liebermann B, Liebermann DA . 1991b Oncogene 6: 903–909

  • Hueber AO, Zornig M, Lyon D, Suda T, Nagata S, Evan GI . 1997 Science 278: 1305–1309

  • Irmler M, Thome M, Hahne M, Schneider P, Hofmann K, Steiner V, Bodmer JL, Schroter M, Burns K, Mattmann C, Rimoldi D, French LE, Tschopp J . 1997 Nature 388: 190–195

  • Juin P, Hueber AO, Littlewood T, Evan G . 1999 Genes Dev. 13: 1367–1381

  • Kagaya S, Kitanaka C, Noguchi K, Mochizuki T, Sugiyama A, Asai A, Yasuhara N, Eguchi Y, Tsujimoto Y, Kuchino Y . 1997 Mol. Cell. Biol. 17: 6736–6745

  • Kasibhatla S, Beere HM, Brunner T, Echeverri F, Green DR . 2000 Curr. Biol. 10: 1205–1208

  • Li H, Zhu H, Xu CJ, Yuan J . 1998 Cell 94: 491–501

  • Liebermann DA, Hoffman B . 1994 Stem Cells (Dayt) 12: 352–369

  • Liebermann DA, Hoffman-Liebermann B . 1989 Oncogene 4: 583–592

  • Metcalf D . 1991 Science 254: 529–533

  • Muzio M, Chinnaiyan AM, Kischkel FC, O'Rourke K, Shevchenko A, Ni J, Scaffidi C, Bretz JD, Zhang M, Gentz R, Mann M, Krammer PH, Peter ME, Dixit VM . 1996 Cell 85: 817–827

  • Nagata S . 1997 Cell 88: 355–365

  • Nesbit CE, Tersak JM, Prochownik EV . 1999 Oncogene 18: 3004–3016

  • Nunez G, Benedict MA, Hu Y, Inohara N . 1998 Oncogene 17: 3237–3245

  • Packham G, Cleveland JL . 1995 Biochim. Biophys. Acta. 1242: 11–28

  • Pear WS, Nolan GP, Scott ML, Baltimore D . 1993 Proc. Natl. Acad. Sci. USA 90: 8392–8396

  • Pellicer A, Wigler M, Axel R, Silverstein S . 1978 Cell 14: 133–141

  • Refaeli Y, Van Parijs L, London CA, Tschopp J, Abbas AK . 1998 Immunity 8: 615–623

  • Sawyers CL, Denny CT, Witte ON . 1991 Cell 64: 337–350

  • Scaffidi C, Fulda S, Srinivasan A, Friesen C, Li F, Tomaselli KJ, Debatin KM, Krammer PH, Peter ME . 1998 EMBO J. 17: 1675–1687

  • Schmidt EV . 1999 Oncogene 18: 2988–2996

  • Selvakumaran M, Liebermann D, Hoffman-Liebermann B . 1993 Blood 81: 2257–2262

  • Spencer CA, Groudine M . 1991 Adv. Cancer Res. 56: 1–48

  • Susin SA, Zamzami N, Castedo M, Daugas E, Wang HG, Geley S, Fassy F, Reed JC, Kroemer G . 1997 J. Exp. Med. 186: 25–37

  • Tilly JL, Hsueh AJ . 1993 J. Cell. Physiol. 154: 519–526

  • Taira T, Iguchi-Ariga SM, Ariga H . 1994 Mol. Cell. Biol. 14: 6386–6397

  • Traver D, Akashi K, Weissman IL, Lagasse E . 1998 Immunity 9: 47–57

  • Vaux DL, Cory S, Adams JM . 1988 Nature 335: 440–442

  • Yin XM, Wang K, Gross A, Zhao Y, Zinkel S, Klocke B, Roth KA, Korsmeyer SJ . 1999 Nature 400: 886–891

  • Ymer S, Tucker WQ, Sanderson CJ, Hapel AJ, Campbell HD, Young IG . 1985 Nature 317: 255–258

Download references

Acknowledgements

We thank Dr K Krishnaraju for assistance with the murine bone marrow cell culture analyses. This research was supported by National Institutes of Health grant R01CA81168 to B Hoffman.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dan A Liebermann or Barbara Hoffman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amanullah, A., Liebermann, D. & Hoffman, B. Deregulated c-Myc prematurely recruits both Type I and II CD95/Fas apoptotic pathways associated with terminal myeloid differentiation. Oncogene 21, 1600–1610 (2002). https://doi.org/10.1038/sj.onc.1205231

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1205231

Keywords

This article is cited by

Search

Quick links