Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

β-catenin is a downstream effector of Wnt-mediated tumorigenesis in the mammary gland

Abstract

The Wnt signal transduction pathway has been implicated in mammary tumorigenesis in the mouse. β-catenin, a key downstream effector of this pathway interacts with and thus activates the Tcf/Lef family of transcription factors. Elevated levels of β-catenin have been found in many human tumors, notably colon carcinomas. Recently, elevated levels of β-catenin have been associated with poor prognosis in human adenocarcinoma of the breast. In order to assess the possible role of β-catenin in mammary carcinoma, we have created transgenic mice bearing the MMTV–LTR driving an activated form of β-catenin. These mice develop mammary gland hyperplasia and mammary adenocarcinoma, a phenotype very similar to that of transgenic mice expressing an MMTV-driven Wnt gene. Indeed, the histopathology of the mammary tumors in Wnt-mediated adenocarcinoma is identical to that observed in our β-catenin-mediated disease model. Furthermore, putative β-catenin transcriptional targets, cyclin D1 and c-myc, are elevated in β-catenin-mediated mammary tumors and cell lines. These observations support the notion that the oncogenic Wnt pathway operates via β-catenin and its targets in the context of mammary hyperplasia and carcinoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Barth AI, Pollack AL, Altschuler Y, Mostov KE, Nelson WJ . 1997 J. Cell. Biol. 136: 693–706

  • Brown AM, Wildin RS, Prendergast TJ, Varmus HE . 1986 Cell 46: 1001–1009

  • Bullions LC, Levine AJ . 1998 Curr. Opin. Oncol. 10: 81–87

  • Gat U, DasGupta R, Degenstein L, Fuchs E . 1998 Cell 95: 605–614

  • Haertel-Wiesmann M, Liang Y, Fantl WJ, Williams LT . 2000 J. Biol. Chem. 275: 32046–32051

  • Harada N, Tamai Y, Ishikawa T, Sauer B, Takaku K, Oshima M, Taketo MM . 1999 EMBO J. 18: 5931–5942

  • He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, Morin PJ, Vogelstein B, Kinzler KW . 1998 Science 281: 1509–1512

  • Henderson BR . 2000 Nat. Cell. Biol. 2: 653–660

  • Hsu SC, Galceran J, Grosschedl R . 1998 Mol. Cell. Biol. 18: 4807–4818

  • Kinzler KW, Vogelstein B . 1996 Cell 87: 159–170

  • Kolligs FT, Hu G, Dang CV, Fearon ER . 1999 Mol. Cell. Biol. 19: 5696–5706

  • Lane TF, Leder P . 1997 Oncogene 15: 2133–2144

  • Lin SY, Xia W, Wang JC, Kwong KY, Spohn B, Wen Y, Pestell RG, Hung MC . 2000 Proc. Natl. Acad. Sci. USA 97: 4262–4266

  • Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B, Kinzler KW . 1997 Science 275: 1787–1790

  • Moser AR, Mattes EM, Dove WF, Lindstrom MJ, Haag JD, Gould MN . 1993 Proc. Natl. Acad. Sci. USA 90: 8977–8981

  • Munemitsu S, Albert I, Rubinfeld B, Polakis P . 1996 Mol. Cell. Biol. 16: 4088–4094

  • Neufeld KL, Nix DA, Bogerd H, Kang Y, Beckerle MC, Cullen BR, White RL . 2000 Proc. Natl. Acad. Sci. USA 97: 12085–12090

  • Orsulic S, Peifer M . 1996 J. Cell. Biol. 134: 1283–1300

  • Pennica D, Swanson TA, Welsh JW, Roy MA, Lawrence DA, Lee J, Brush J, Taneyhill LA, Deuel B, Lew M, Watanabe C, Cohen RL, Melhem MF, Finley GG, Quirke P, Goddard AD, Hillan KJ, Gurney AL, Botstein D, Levine AJ . 1998 Proc. Natl. Acad. Sci. USA 95: 14717–14722

  • Polakis P . 1999 Curr. Opin. Genet. Dev. 9: 15–21

  • Polakis P . 2000 Genes Dev. 14: 1837–1851

  • Rosin-Arbesfeld R, Townsley F, Bienz M . 2000 Nature 406: 1009–1012

  • Smith R, Peters G, Dickson C . 1995 Genomics 25: 85–92

  • Shtutman M, Zhurinsky J, Simcha I, Albanese C, D'Amico M, Pestell R, Ben-Zeev A . 1999 Proc. Natl. Acad. Sci. USA 96: 5522–5527

  • Tetsu O, McCormick F . 1999 Nature 398: 422–426

  • Tsukamoto AS, Grosschedl R, Guzman RC, Parslow T, Varmus HE . 1988 Cell 55: 619–625

  • van de Wetering M, Cavallo R, Dooijes D, van Beest M, van Es J, Loureiro J, Ypma A, Hursh D, Jones T, Bejsovec A, Peifer M, Mortin M, Clevers H . 1997 Cell 88: 789–799

  • Wong GT, Gavin BJ, McMahon AP . 1994 Mol. Cell. Biol. 14: 6278–6286

  • Wong MH, Rubinfeld B, Gordon JI . 1998 J. Cell. Biol. 141: 765–777

  • Xu L, Corcoran RB, Welsh JW, Pennica D, Levine AJ . 2000 Genes Dev. 14: 585–595

  • Ziemer LT, Pennica D, Levine AJ . 2001 Mol. Cell. Biol. 21: 562–574

Download references

Acknowledgements

We thank Anne Harrington for technical assistance in generating the transgenic mice. JS Michaelson is supported by a Breast Cancer Research Fellowship from the Department of Defense.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michaelson, J., Leder, P. β-catenin is a downstream effector of Wnt-mediated tumorigenesis in the mammary gland. Oncogene 20, 5093–5099 (2001). https://doi.org/10.1038/sj.onc.1204586

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1204586

Keywords

This article is cited by

Search

Quick links