Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Dimerization of the amino terminal domain of p57Kip2 inhibits cyclin D1-Cdk4 kinase activity

Abstract

Previous studies have led to the proposal that a single molecule of Cki can associate with the cyclin/Cdk complex to repress its activity. On the other hand, multiple inhibitor molecules are required to inhibit Cdks. In the present work, by using differently tagged p57Kip2 proteins we demonstrate that p57Kip2 can bind to itself in vitro and in vivo. Mutational deletion analysis showed that the NH2 terminal domain of p57Kip2 is necessary and sufficient to dimerization. Using an in vitro competition/association assay, we demonstrate that cyclin D1 alone, Cdk4 alone and/or cyclin D1/Cdk4 complexes do not compete for the p57Kip2 homodimers formation. However, a mutation in the α-helix domain of p57Kip2 (R33L) strongly reduced homodimer formation but did not modify interaction with cyclin D1-Cdk4 complexes. Also, increasing amounts of p57Kip2 lead in vivo to a significant augmentation in the level of p57Kip2 homodimerization associated with cyclin D1-Cdk4 complexes and to a marked inhibition of the cyclin D1-Cdk4 kinase activity. Altogether, these data suggest a model whereby p57Kip2 associates with itself by using the NH2 domain to form a homodimeric species which interacts with and inhibits the cyclin D1-Cdk4 complexes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Blain SW, Montalvo E and Massagué J. . 1997 J. Biol. Chem. 272: 25863–25872.

  • Boussif O, Lezouac'h FM, Zanta A, Mergy MD, Scherman D, Demeix B and Behr JP. . 1995 Proc. Natl. Acad. Sci. USA 92: 7297–7301.

  • Chen IT, Akamatsu M, Smith ML, Lung FD, Duba D, Roller PP, Fornace Jr AJ and O'Connor PM. . 1996 Oncogene 12: 595–607.

  • Cheng M, Olivier P, Diehl JA, Fero M, Roussel MF, Roberts JM and Sherr CJ. . 1999 EMBO J. 18: 1571–1583.

  • Harper JW and Elledge SJ. . 1996 Curr. Opin. Genet. Dev. 6: 56–64.

  • Harper JW, Elledge SJ, Keyomarst K, Dynlacht B, Tsai LH, Zhang P, Dobrowolski S, Bai C, Connell-Crowley L, Swindell E, Fox MP and Wei N. . 1995 Mol. Biol. Cell 6: 387–400.

  • Hashimoto Y, Kohri K, Kaneko Y, Morisaki H, Kato T, Ikeda K and Nakanishi M. . 1998 J. Biol. Chem. 273: 16544–16550.

  • Hengst L and Reed SI. . 1998 Curr. Opin. Microbiol. Immunol. 227: 57–103.

  • Kerr LD, Inoue J and Verma IM. (1992). . Curr. Opin. Cell Biol. 4: 496–501.

  • LaBaer J, Garrett MD, Stevenson LF, Slingerland JM, Sandhu C, Chou HS, Fattaey A and Harlow E. . 1997 Genes Dev. 11: 847–862.

  • Lassar AB, Buskin JN, Lockson D, Davis RL, Apone SN, Hauschka SD and Weintraub H. . 1995 Cell 92: 7297–7301.

  • Lee MH, Nikolic M, Baptista CA, Lai E, Tsai LH and Massagué J. . 1996 Proc. Natl. Acad. Sci. USA 93: 3259–3263.

  • Lenormand JL, Benayoun B, Guillier M, Vandromme M, Leibovitch MP and Leibovitch SA. . 1997 Mol. Cell. Biol. 17: 583–593.

  • Lin J, Reichner C, Wu X and Levine AJ. . 1996 Mol. Cell. Biol. 16: 1786–1793.

  • Liu M, Lee MH, Cohen M, Bommakanti M and Freedman LP. . 1996 Genes Dev. 10: 142–153.

  • Matsuoka S, Edwards MC, Bai C, Parka S, Zhang P, Baldini A, Harper JW and Elledge SJ. . 1995 Genes Dev. 9: 650–662.

  • Morgan O. . 1994 Nature 374: 131–134.

  • Parker SB, Eichele G, Zhang P, Rawls A, Sands AT, Bradley A, Olson EN, Harper JW and Elledge SJ. . 1995 Science 267: 1024–1027.

  • Pines J. . 1995 Adv. Cancer Res. 66: 181–211.

  • Polyak K, Lee MH, Erdjment-Bromage H, Koff A, Roberts JM, Tempst P and Massagué J. . 1994 Cell 78: 59–66.

  • Reynisdottir I, Polyak K, Iavaronne A and Massagué J. . 1995 Genes Dev. 9: 1831–1845.

  • Russo AA, Jeffrey PD, Patten AK, Massagué J and Pavletich NP. . 1996 Nature 382: 325–331.

  • Sherr CJ. . 1994 Cell 79: 551–555.

  • Sherr CJ. . 1996 Science 274: 1672–1677.

  • Sherr CJ and Roberts JM. . 1995 Genes Dev. 9: 1149–1163.

  • Toyoshima H and Hunter T. . 1994 Cell 78: 67–74.

  • Weinberg RA. . 1995 Cell 81: 323–330.

  • Xiong Y. . 1996 Biochim. Biophys. Acta 1288: 1–5.

  • Zhang H, Hannon GJ and Beach D. . 1994 Genes Dev. 8: 1750–1758.

Download references

Acknowledgements

We are grateful to R Ferreira for technical assistance. Mr E Reynaud is a fellow from Ministère de la Recherche et de la Technologie (MRT) and Fondation pour la Recherche Médicale (FRM). This work was supported by the Institut National de la Santé et de la Recherche Médicale, the Center National de la Recherche Scientifique and grants from the Institut Gustave Roussy, Association pour la Recherche contre la Cancer (ARC no. 6829) and Ligue Nationale contre la Cancer.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reynaud, E., Guillier, M., Leibovitch, MP. et al. Dimerization of the amino terminal domain of p57Kip2 inhibits cyclin D1-Cdk4 kinase activity. Oncogene 19, 1147–1152 (2000). https://doi.org/10.1038/sj.onc.1203403

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1203403

Keywords

This article is cited by

Search

Quick links