Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Feature Review
  • Published:

The pipeline and future of drug development in schizophrenia

Abstract

While the current antipsychotic medications have profoundly impacted the treatment of schizophrenia over the past 50 years, the newer atypical antipsychotics have not fulfilled initial expectations, and enormous challenges remain in long-term treatment of this debilitating disease. In particular, improved treatment of the negative symptoms and cognitive dysfunction in schizophrenia which greatly impact overall morbidity is needed. In this review we will briefly discuss the current pipeline of drugs for schizophrenia, outlining many of the strategies and targets currently under investigation for the development of new schizophrenia drugs. Many of these compounds have great potential as augmenting agents in the treatment of negative symptoms and cognition. In addition, we will highlight the importance of developing new paradigms for drug discovery in schizophrenia and call for an increased role of academic scientists in discovering and validating novel drug targets. Indeed, recent breakthroughs in genetic studies of schizophrenia are allowing for the development of hypothesis-driven approaches for discovering possible disease-modifying drugs for schizophrenia. Thus, this is an exciting and pivotal time for the development of truly novel approaches to drug development and treatment of complex disorders like schizophrenia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Labhardt F . Largactil therapy in schizophrenia and other psychotic conditions. Schweiz Arch Neurol Psychiatr 1954; 73: 309–338.

    CAS  PubMed  Google Scholar 

  2. Murphy BP, Chung YC, Park TW, McGorry PD . Pharmacological treatment of primary negative symptoms in schizophrenia: a systematic review. Schizophr Res 2006; 88: 5–25.

    Article  PubMed  Google Scholar 

  3. Kane J, Honigfeld G, Singer J, Meltzer HY . Clozapine for the treatment-resistant schizophrenic. A double-blind comparison with chlorpromazine. Arch Gen Psychiatry 1988; 45: 789–796.

    Article  CAS  PubMed  Google Scholar 

  4. Meltzer HY, Alphs L, Green AI, Altamura AC, Anand R, Bertoldi A et al. Clozapine treatment for suicidality in schizophrenia: International Suicide Prevention Trial (InterSePT). Arch Gen Psychiatry 2003; 60: 82–91.

    Article  CAS  PubMed  Google Scholar 

  5. Bilder RM, Goldman RS, Volavka J, Czobor P, Hoptman M, Sheitman B et al. Neurocognitive effects of clozapine, olanzapine, risperidone, and haloperidol in patients with chronic schizophrenia or schizoaffective disorder. Am J Psychiatry 2002; 159: 1018–1028.

    Article  PubMed  Google Scholar 

  6. Lindstrom LH . The effect of long-term treatment with clozapine in schizophrenia: a retrospective study in 96 patients treated with clozapine for up to 13 years. Acta Psychiatr Scand 1988; 77: 524–529.

    Article  CAS  PubMed  Google Scholar 

  7. McEvoy JP, Lieberman JA, Stroup TS, Davis SM, Meltzer HY, Rosenheck RA et al. Effectiveness of clozapine versus olanzapine, quetiapine, and risperidone in patients with chronic schizophrenia who did not respond to prior atypical antipsychotic treatment. Am J Psychiatry 2006; 163: 600–610.

    Article  PubMed  Google Scholar 

  8. Fleischhacker WW . New drugs for the treatment of schizophrenic patients. Acta Psychiatr Scand Suppl 1995; 388: 24–30.

    Article  CAS  PubMed  Google Scholar 

  9. Swartz MS, Perkins DO, Stroup TS, Davis SM, Capuano G, Rosenheck RA et al. Effects of antipsychotic medications on psychosocial functioning in patients with chronic schizophrenia: findings from the NIMH CATIE study. Am J Psychiatry 2007; 164: 428–436.

    Article  PubMed  Google Scholar 

  10. Lieberman JA, Stroup TS, McEvoy JP, Swartz MS, Rosenheck RA, Perkins DO et al. Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. N Engl J Med 2005; 353: 1209–1223.

    Article  CAS  PubMed  Google Scholar 

  11. Keefe RS, Silva SG, Perkins DO, Lieberman JA . The effects of atypical antipsychotic drugs on neurocognitive impairment in schizophrenia: a review and meta-analysis. Schizophr Bull 1999; 25: 201–222.

    Article  CAS  PubMed  Google Scholar 

  12. Leucht S, Pitschel-Walz G, Abraham D, Kissling W . Efficacy and extrapyramidal side-effects of the new antipsychotics olanzapine, quetiapine, risperidone, and sertindole compared to conventional antipsychotics and placebo. A meta-analysis of randomized controlled trials. Schizophr Res 1999; 35: 51–68.

    Article  CAS  PubMed  Google Scholar 

  13. Allison DB, Mentore JL, Heo M, Chandler LP, Cappelleri JC, Infante MC et al. Antipsychotic-induced weight gain: a comprehensive research synthesis. Am J Psychiatry 1999; 156: 1686–1696.

    CAS  PubMed  Google Scholar 

  14. Newcomer JW, Haupt DW, Fucetola R, Melson AK, Schweiger JA, Cooper BP et al. Abnormalities in glucose regulation during antipsychotic treatment of schizophrenia. Arch Gen Psychiatry 2002; 59: 337–345.

    Article  CAS  PubMed  Google Scholar 

  15. Kozikowski AP, Roth B, Tropsha A . Why academic drug discovery makes sense. Science 2006; 313: 1235–1236.

    Article  CAS  PubMed  Google Scholar 

  16. Roth BL . Contributions of molecular biology to antipsychotic drug discovery: promises fulfilled or unfulfilled? Dialogues Clin Neurosci 2006; 8: 303–309.

    PubMed  PubMed Central  Google Scholar 

  17. Kane J, Canas F, Kramer M, Ford L, Gassmann-Mayer C, Lim P et al. Treatment of schizophrenia with paliperidone extended-release tablets: a 6-week placebo-controlled trial. Schizophr Res 2007; 90: 147–161.

    Article  CAS  PubMed  Google Scholar 

  18. Bayes M, Rabasseda X, Prous JR . Gateways to clinical trials. Methods Find Exp Clin Pharmacol 2006; 28: 185–206.

    CAS  PubMed  Google Scholar 

  19. O’Connor KA, Roth BL . Finding new tricks for old drugs: an efficient route for public-sector drug discovery. Nat Rev Drug Discov 2005; 4: 1005–1014.

    Article  CAS  PubMed  Google Scholar 

  20. Hyman SE, Fenton WS . Medicine. What are the right targets for psychopharmacology? Science 2003; 299: 350–351.

    Article  CAS  PubMed  Google Scholar 

  21. Agid Y, Buzsaki G, Diamond DM, Frackowiak R, Giedd J, Girault JA et al. How can drug discovery for psychiatric disorders be improved? Nat Rev Drug Discov 2007; 6: 189–201.

    Article  CAS  PubMed  Google Scholar 

  22. Norman RM, Malla AK, McLean T, Voruganti LP, Cortese L, McIntosh E et al. The relationship of symptoms and level of functioning in schizophrenia to general wellbeing and the Quality of Life Scale. Acta Psychiatr Scand 2000; 102: 303–309.

    Article  CAS  PubMed  Google Scholar 

  23. Katschnig H . Schizophrenia and quality of life. Acta Psychiatr Scand Suppl 2000; 102: 33–37.

    Article  Google Scholar 

  24. Kirkpatrick B, Fenton WS, Carpenter Jr WT, Marder SR . The NIMH-MATRICS consensus statement on negative symptoms. Schizophr Bull 2006; 32: 214–219.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Keefe RS, Bilder RM, Harvey PD, Davis SM, Palmer BW, Gold JM et al. Baseline neurocognitive deficits in the CATIE schizophrenia trial. Neuropsychopharmacology 2006; 31: 2033–2046.

    Article  PubMed  Google Scholar 

  26. Bowie CR, Harvey PD . Cognition in schizophrenia: impairments, determinants, and functional importance. Psychiatr Clin North Am 2005; 28: 613–633, 626.

    Article  PubMed  Google Scholar 

  27. Green MF . What are the functional consequences of neurocognitive deficits in schizophrenia? Am J Psychiatry 1996; 153: 321–330.

    Article  CAS  PubMed  Google Scholar 

  28. Purdon SE, Jones BD, Stip E, Labelle A, Addington D, David SR et al. Neuropsychological change in early phase schizophrenia during 12 months of treatment with olanzapine, risperidone, or haloperidol. The Canadian Collaborative Group for research in schizophrenia. Arch Gen Psychiatry 2000; 57: 249–258.

    Article  CAS  PubMed  Google Scholar 

  29. Harvey PD, Keefe RS . Studies of cognitive change in patients with schizophrenia following novel antipsychotic treatment. Am J Psychiatry 2001; 158: 176–184.

    Article  CAS  PubMed  Google Scholar 

  30. Marder SR, Fenton W . Measurement and Treatment Research to Improve Cognition in Schizophrenia: NIMH MATRICS initiative to support the development of agents for improving cognition in schizophrenia. Schizophr Res 2004; 72: 5–9.

    Article  PubMed  Google Scholar 

  31. Roth BL, Sheffler DJ, Kroeze WK . Magic shotguns versus magic bullets: selectively non-selective drugs for mood disorders and schizophrenia. Nat Rev Drug Discov 2004; 3: 353–359.

    Article  CAS  PubMed  Google Scholar 

  32. Davies MA, Sheffler DJ, Roth BL . Aripiprazole: a novel atypical antipsychotic drug with a uniquely robust pharmacology. CNS Drug Rev 2004; 10: 317–336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Creese I, Burt DR, Snyder SH . Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science 1976; 192: 481–483.

    Article  CAS  PubMed  Google Scholar 

  34. Seeman P, Chau-Wong M, Tedesco J, Wong K . Dopamine receptors in human and calf brains, using [3H]apomorphine and an antipsychotic drug. Proc Natl Acad Sci USA 1976; 73: 4354–4358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nordstrom AL, Farde L, Wiesel FA, Forslund K, Pauli S, Halldin C et al. Central D2-dopamine receptor occupancy in relation to antipsychotic drug effects: a double-blind PET study of schizophrenic patients. Biol Psychiatry 1993; 33: 227–235.

    Article  CAS  PubMed  Google Scholar 

  36. Farde L, Nordstrom AL, Wiesel FA, Pauli S, Halldin C, Sedvall G . Positron emission tomographic analysis of central D1 and D2 dopamine receptor occupancy in patients treated with classical neuroleptics and clozapine. Relation to extrapyramidal side effects. Arch Gen Psychiatry 1992; 49: 538–544.

    Article  CAS  PubMed  Google Scholar 

  37. Meltzer HY . Clinical studies on the mechanism of action of clozapine: the dopamine-serotonin hypothesis of schizophrenia. Psychopharmacology (Berl) 1989; 99 (Suppl): S18–S27.

    Article  Google Scholar 

  38. Shapiro DA, Renock S, Arrington E, Chiodo LA, Liu LX, Sibley DR et al. Aripiprazole, a novel atypical antipsychotic drug with a unique and robust pharmacology. Neuropsychopharmacology 2003; 28: 1400–1411.

    Article  CAS  PubMed  Google Scholar 

  39. Yokoi F, Grunder G, Biziere K, Stephane M, Dogan AS, Dannals RF et al. Dopamine D2 and D3 receptor occupancy in normal humans treated with the antipsychotic drug aripiprazole (OPC 14597): a study using positron emission tomography and [11C]raclopride. Neuropsychopharmacology 2002; 27: 248–259.

    Article  CAS  PubMed  Google Scholar 

  40. Miyamoto S, Duncan GE, Marx CE, Lieberman JA . Treatments for schizophrenia: a critical review of pharmacology and mechanisms of action of antipsychotic drugs. Mol Psychiatry 2005; 10: 79–104.

    Article  CAS  PubMed  Google Scholar 

  41. Burstein ES, Ma J, Wong S, Gao Y, Pham E, Knapp AE et al. Intrinsic efficacy of antipsychotics at human D2, D3, and D4 dopamine receptors: identification of the clozapine metabolite N-desmethylclozapine as a D2/D3 partial agonist. J Pharmacol Exp Ther 2005; 315: 1278–1287.

    Article  CAS  PubMed  Google Scholar 

  42. Davies MA, Compton-Toth BA, Hufeisen SJ, Meltzer HY, Roth BL . The highly efficacious actions of N-desmethylclozapine at muscarinic receptors are unique and not a common property of either typical or atypical antipsychotic drugs: is M1 agonism a pre-requisite for mimicking clozapine's actions? Psychopharmacology (Berl) 2005; 178: 451–460.

    Article  CAS  Google Scholar 

  43. Weiner DM, Meltzer HY, Veinbergs I, Donohue EM, Spalding TA, Smith TT et al. The role of M1 muscarinic receptor agonism of N-desmethylclozapine in the unique clinical effects of clozapine. Psychopharmacology (Berl) 2004; 177: 207–216.

    Article  CAS  Google Scholar 

  44. Sams-Dodd F . Target-based drug discovery: is something wrong? Drug Discov Today 2005; 10: 139–147.

    Article  CAS  PubMed  Google Scholar 

  45. Gray JA, Roth BL . Developing selectively nonselective drugs for treating CNS disorders. Drug Discov Today 2006; 3: 413–419.

    Article  Google Scholar 

  46. Goldman-Rakic PS, Castner SA, Svensson TH, Siever LJ, Williams GV . Targeting the dopamine D1 receptor in schizophrenia: insights for cognitive dysfunction. Psychopharmacology (Berl) 2004; 174: 3–16.

    Article  CAS  Google Scholar 

  47. Castner SA, Williams GV, Goldman-Rakic PS . Reversal of antipsychotic-induced working memory deficits by short-term dopamine D1 receptor stimulation. Science 2000; 287: 2020–2022.

    Article  CAS  PubMed  Google Scholar 

  48. Karlsson P, Smith L, Farde L, Harnryd C, Sedvall G, Wiesel FA . Lack of apparent antipsychotic effect of the D1-dopamine receptor antagonist SCH39166 in acutely ill schizophrenic patients. Psychopharmacology (Berl) 1995; 121: 309–316.

    Article  CAS  Google Scholar 

  49. Den Boer JA, van Megen HJ, Fleischhacker WW, Louwerens JW, Slaap BR, Westenberg HG et al. Differential effects of the D1-DA receptor antagonist SCH39166 on positive and negative symptoms of schizophrenia. Psychopharmacology (Berl) 1995; 121: 317–322.

    Article  CAS  Google Scholar 

  50. Cai JX, Arnsten AF . Dose-dependent effects of the dopamine D1 receptor agonists A77636 or SKF81297 on spatial working memory in aged monkeys. J Pharmacol Exp Ther 1997; 283: 183–189.

    CAS  PubMed  Google Scholar 

  51. Arnsten AF, Cai JX, Murphy BL, Goldman-Rakic PS . Dopamine D1 receptor mechanisms in the cognitive performance of young adult and aged monkeys. Psychopharmacology (Berl) 1994; 116: 143–151.

    Article  CAS  Google Scholar 

  52. Williams GV, Goldman-Rakic PS . Modulation of memory fields by dopamine D1 receptors in prefrontal cortex. Nature 1995; 376: 572–575.

    Article  CAS  PubMed  Google Scholar 

  53. Castner SA, Goldman-Rakic PS . Enhancement of working memory in aged monkeys by a sensitizing regimen of dopamine D1 receptor stimulation. J Neurosci 2004; 24: 1446–1450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Joyce JN, Millan MJ . Dopamine D3 receptor antagonists as therapeutic agents. Drug Discov Today 2005; 10: 917–925.

    Article  CAS  PubMed  Google Scholar 

  55. Gurevich EV, Bordelon Y, Shapiro RM, Arnold SE, Gur RE, Joyce JN . Mesolimbic dopamine D3 receptors and use of antipsychotics in patients with schizophrenia. A postmortem study. Arch Gen Psychiatry 1997; 54: 225–232.

    Article  CAS  PubMed  Google Scholar 

  56. Witkin J, Gasior M, Acri J, Beekman M, Thurkauf A, Yuan J et al. Atypical antipsychotic-like effects of the dopamine D3 receptor agonist, (+)-PD 128,907. Eur J Pharmacol 1998; 347: R1–R3.

    Article  CAS  PubMed  Google Scholar 

  57. Vonderfecht SL, Stone ML, Eversole RR, Yancey MF, Schuette MR, Duncan BA et al. Myopathy related to administration of a cationic amphiphilic drug and the use of multidose drug distribution analysis to predict its occurrence. Toxicol Pathol 2004; 32: 318–325.

    Article  CAS  PubMed  Google Scholar 

  58. Hackling AE, Stark H . Dopamine D3 receptor ligands with antagonist properties. Chembiochem 2002; 3: 946–961.

    Article  CAS  PubMed  Google Scholar 

  59. Reavill C, Taylor SG, Wood MD, Ashmeade T, Austin NE, Avenell KY et al. Pharmacological actions of a novel, high-affinity, and selective human dopamine D(3) receptor antagonist, SB-277011-A. J Pharmacol Exp Ther 2000; 294: 1154–1165.

    CAS  PubMed  Google Scholar 

  60. Laszy J, Laszlovszky I, Gyertyan I . Dopamine D3 receptor antagonists improve the learning performance in memory-impaired rats. Psychopharmacology (Berl) 2005; 179: 567–575.

    Article  CAS  Google Scholar 

  61. Van Tol HH, Bunzow JR, Guan HC, Sunahara RK, Seeman P, Niznik HB et al. Cloning of the gene for a human dopamine D4 receptor with high affinity for the antipsychotic clozapine. Nature 1991; 350: 610–614.

    Article  CAS  PubMed  Google Scholar 

  62. Tarazi FI, Zhang K, Baldessarini RJ . Dopamine D4 receptors: beyond schizophrenia. J Recept Signal Transduct Res 2004; 24: 131–147.

    Article  CAS  PubMed  Google Scholar 

  63. Kramer MS, Last B, Getson A, Reines SA . The effects of a selective D4 dopamine receptor antagonist (L-745,870) in acutely psychotic inpatients with schizophrenia. D4 Dopamine Antagonist Group. Arch Gen Psychiatry 1997; 54: 567–572.

    Article  CAS  PubMed  Google Scholar 

  64. Corrigan MH, Gallen CC, Bonura ML, Merchant KM . Effectiveness of the selective D4 antagonist sonepiprazole in schizophrenia: a placebo-controlled trial. Biol Psychiatry 2004; 55: 445–451.

    Article  CAS  PubMed  Google Scholar 

  65. Truffinet P, Tamminga CA, Fabre LF, Meltzer HY, Riviere ME, Papillon-Downey C . Placebo-controlled study of the D4/5-HT2A antagonist fananserin in the treatment of schizophrenia. Am J Psychiatry 1999; 156: 419–425.

    CAS  PubMed  Google Scholar 

  66. Kotecha SA, Oak JN, Jackson MF, Perez Y, Orser BA, Van Tol HH et al. A D2 class dopamine receptor transactivates a receptor tyrosine kinase to inhibit NMDA receptor transmission. Neuron 2002; 35: 1111–1122.

    Article  CAS  PubMed  Google Scholar 

  67. Rubinstein M, Cepeda C, Hurst RS, Flores-Hernandez J, Ariano MA, Falzone TL et al. Dopamine D4 receptor-deficient mice display cortical hyperexcitability. J Neurosci 2001; 21: 3756–3763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Jentsch JD, Taylor JR, Redmond Jr DE, Elsworth JD, Youngren KD, Roth RH . Dopamine D4 receptor antagonist reversal of subchronic phencyclidine-induced object retrieval/detour deficits in monkeys. Psychopharmacology (Berl) 1999; 142: 78–84.

    Article  CAS  Google Scholar 

  69. Tunbridge EM, Harrison PJ, Weinberger DR . Catechol-o-methyltransferase, cognition, and psychosis: Val158Met and beyond. Biol Psychiatry 2006; 60: 141–151.

    Article  CAS  PubMed  Google Scholar 

  70. Kopin IJ . Catecholamine metabolism: basic aspects and clinical significance. Pharmacol Rev 1985; 37: 333–364.

    CAS  PubMed  Google Scholar 

  71. Karoum F, Chrapusta SJ, Egan MF . 3-Methoxytyramine is the major metabolite of released dopamine in the rat frontal cortex: reassessment of the effects of antipsychotics on the dynamics of dopamine release and metabolism in the frontal cortex, nucleus accumbens, and striatum by a simple two pool model. J Neurochem 1994; 63: 972–979.

    Article  CAS  PubMed  Google Scholar 

  72. Gogos JA, Morgan M, Luine V, Santha M, Ogawa S, Pfaff D et al. Catechol-O-methyltransferase-deficient mice exhibit sexually dimorphic changes in catecholamine levels and behavior. Proc Natl Acad Sci USA 1998; 95: 9991–9996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Liljequist R, Haapalinna A, Ahlander M, Li YH, Mannisto PT . Catechol O-methyltransferase inhibitor tolcapone has minor influence on performance in experimental memory models in rats. Behav Brain Res 1997; 82: 195–202.

    Article  CAS  PubMed  Google Scholar 

  74. Gasparini M, Fabrizio E, Bonifati V, Meco G . Cognitive improvement during Tolcapone treatment in Parkinson's disease. J Neural Transm 1997; 104: 887–894.

    Article  CAS  PubMed  Google Scholar 

  75. Watkins P . COMT inhibitors and liver toxicity. Neurology 2000; 55: S51–S52; discussion S53–S56.

    Article  CAS  PubMed  Google Scholar 

  76. Chen J, Lipska BK, Halim N, Ma QD, Matsumoto M, Melhem S et al. Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): effects on mRNA, protein, and enzyme activity in postmortem human brain. Am J Hum Genet 2004; 75: 807–821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Woodward ND, Jayathilake K, Meltzer HY . COMT val108/158met genotype, cognitive function, and cognitive improvement with clozapine in schizophrenia. Schizophr Res 2007; 90: 86–96.

    Article  PubMed  Google Scholar 

  78. Meltzer HY, Matsubara S, Lee JC . Classification of typical and atypical antipsychotic drugs on the basis of dopamine D-1, D-2 and serotonin2 pKi values. J Pharmacol Exp Ther 1989; 251: 238–246.

    CAS  PubMed  Google Scholar 

  79. Altar CA, Wasley AM, Neale RF, Stone GA . Typical and atypical antipsychotic occupancy of D2 and S2 receptors: an autoradiographic analysis in rat brain. Brain Res Bull 1986; 16: 517–525.

    Article  CAS  PubMed  Google Scholar 

  80. de Paulis T . M-100907 (Aventis). Curr Opin Investig Drugs 2001; 2: 123–132.

    CAS  PubMed  Google Scholar 

  81. Meltzer HY, Arvanitis L, Bauer D, Rein W . Placebo-controlled evaluation of four novel compounds for the treatment of schizophrenia and schizoaffective disorder. Am J Psychiatry 2004; 161: 975–984.

    PubMed  Google Scholar 

  82. Nocjar C, Roth BL, Pehek EA . Localization of 5-HT(2A) receptors on dopamine cells in subnuclei of the midbrain A10 cell group. Neuroscience 2002; 111: 163–176.

    Article  CAS  PubMed  Google Scholar 

  83. Alex KD, Pehek EA . Pharmacologic mechanisms of serotonergic regulation of dopamine neurotransmission. Pharmacol Ther 2007; 113: 296–320.

    Article  CAS  PubMed  Google Scholar 

  84. Meltzer HY . Pre-clinical pharmacology of atypical antipsychotic drugs: a selective review. Br J Psychiatry Suppl 1996; 168: 23–31.

    Article  Google Scholar 

  85. Jordan S, Koprivica V, Chen R, Tottori K, Kikuchi T, Altar CA . The antipsychotic aripiprazole is a potent, partial agonist at the human 5-HT1A receptor. Eur J Pharmacol 2002; 441: 137–140.

    Article  CAS  PubMed  Google Scholar 

  86. Ichikawa J, Ishii H, Bonaccorso S, Fowler WL, O’Laughlin IA, Meltzer HY . 5-HT(2A) and D(2) receptor blockade increases cortical DA release via 5-HT(1A) receptor activation: a possible mechanism of atypical antipsychotic-induced cortical dopamine release. J Neurochem 2001; 76: 1521–1531.

    Article  CAS  PubMed  Google Scholar 

  87. Millan MJ, Dekeyne A, Gobert A . Serotonin (5-HT)2C receptors tonically inhibit dopamine (DA) and noradrenaline (NA), but not 5-HT, release in the frontal cortex in vivo. Neuropharmacology 1998; 37: 953–955.

    Article  CAS  PubMed  Google Scholar 

  88. Siuciak JA, Chapin DS, McCarthy SA, Guanowsky V, Brown J, Chiang P et al. CP-809,101, a selective 5-HT2C agonist, shows activity in animal models of antipsychotic activity. Neuropharmacology 2007; 52: 279–290.

    Article  CAS  PubMed  Google Scholar 

  89. De Luca V, Mueller DJ, de Bartolomeis A, Kennedy JL . Association of the HTR2C gene and antipsychotic induced weight gain: a meta-analysis. Int J Neuropsychopharmacol 2007 [E-pub ahead of print].

  90. Kroeze WK, Hufeisen SJ, Popadak BA, Renock SM, Steinberg S, Ernsberger P et al. H1-histamine receptor affinity predicts short-term weight gain for typical and atypical antipsychotic drugs. Neuropsychopharmacology 2003; 28: 519–526.

    Article  CAS  PubMed  Google Scholar 

  91. Sargent PA, Sharpley AL, Williams C, Goodall EM, Cowen PJ . 5-HT2C receptor activation decreases appetite and body weight in obese subjects. Psychopharmacology (Berl) 1997; 133: 309–312.

    Article  CAS  Google Scholar 

  92. Roth BL . Drugs and valvular heart disease. N Engl J Med 2007; 356: 6–9.

    Article  CAS  PubMed  Google Scholar 

  93. Roth BL, Hanizavareh SM, Blum AE . Serotonin receptors represent highly favorable molecular targets for cognitive enhancement in schizophrenia and other disorders. Psychopharmacology (Berl) 2004; 174: 17–24.

    Article  CAS  Google Scholar 

  94. Reynolds GP, Mason SL, Meldrum A, De Keczer S, Parnes H, Eglen RM et al. 5-Hydroxytryptamine (5-HT)4 receptors in post mortem human brain tissue: distribution, pharmacology and effects of neurodegenerative diseases. Br J Pharmacol 1995; 114: 993–998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Cho S, Hu Y . Activation of 5-HT4 receptors inhibits secretion of beta-amyloid peptides and increases neuronal survival. Exp Neurol 2007; 203: 274–278.

    Article  CAS  PubMed  Google Scholar 

  96. Roth BL, Craigo SC, Choudhary MS, Uluer A, Monsma Jr FJ, Shen Y et al. Binding of typical and atypical antipsychotic agents to 5-hydroxytryptamine-6 and 5-hydroxytryptamine-7 receptors. J Pharmacol Exp Ther 1994; 268: 1403–1410.

    CAS  PubMed  Google Scholar 

  97. Mitchell ES, Neumaier JF . 5-HT6 receptors: a novel target for cognitive enhancement. Pharmacol Ther 2005; 108: 320–333.

    Article  CAS  PubMed  Google Scholar 

  98. Bourson A, Boess FG, Bos M, Sleight AJ . Involvement of 5-HT6 receptors in nigro-striatal function in rodents. Br J Pharmacol 1998; 125: 1562–1566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Rogers DC, Robinson CA, Quilter AJ, Hunter C, Routledge C, Hagan JJ . Cognitive enhancement effects of the selective 5-HT6 antagonist SB-271046. Br J Pharmacol Suppl 1999; 127: 22.

    Google Scholar 

  100. Coull JT . Pharmacological manipulations of the alpha 2-noradrenergic system. Effects on cognition. Drugs Aging 1994; 5: 116–126.

    Article  CAS  PubMed  Google Scholar 

  101. Fields RB, Van Kammen DP, Peters JL, Rosen J, Van Kammen WB, Nugent A et al. Clonidine improves memory function in schizophrenia independently from change in psychosis. Preliminary findings. Schizophr Res 1988; 1: 417–423.

    Article  CAS  PubMed  Google Scholar 

  102. Friedman JI, Adler DN, Temporini HD, Kemether E, Harvey PD, White L et al. Guanfacine treatment of cognitive impairment in schizophrenia. Neuropsychopharmacology 2001; 25: 402–409.

    Article  CAS  PubMed  Google Scholar 

  103. Millan MJ, Gobert A, Newman-Tancredi A, Lejeune F, Cussac D, Rivet JM et al. S18327 (1-[2-[4-(6-fluoro-1, 2-benzisoxazol-3-yl)piperid-1-yl]ethyl]3-phenyl imidazolin-2-one), a novel, potential antipsychotic displaying marked antagonist properties at alpha(1)- and alpha(2)-adrenergic receptors: I. Receptorial, neurochemical, and electrophysiological profile. J Pharmacol Exp Ther 2000; 292: 38–53.

    CAS  PubMed  Google Scholar 

  104. Gobert A, Rivet JM, Audinot V, Newman-Tancredi A, Cistarelli L, Millan MJ . Simultaneous quantification of serotonin, dopamine and noradrenaline levels in single frontal cortex dialysates of freely-moving rats reveals a complex pattern of reciprocal auto- and heteroreceptor-mediated control of release. Neuroscience 1998; 84: 413–429.

    Article  CAS  PubMed  Google Scholar 

  105. Litman RE, Su TP, Potter WZ, Hong WW, Pickar D . Idazoxan and response to typical neuroleptics in treatment-resistant schizophrenia. Comparison with the atypical neuroleptic, clozapine. Br J Psychiatry 1996; 168: 571–579.

    Article  CAS  PubMed  Google Scholar 

  106. Sarter M, Bruno JP . Cognitive functions of cortical acetylcholine: toward a unifying hypothesis. Brain Res Brain Res Rev 1997; 23: 28–46.

    Article  CAS  PubMed  Google Scholar 

  107. Friedman JI . Cholinergic targets for cognitive enhancement in schizophrenia: focus on cholinesterase inhibitors and muscarinic agonists. Psychopharmacology (Berl) 2004; 174: 45–53.

    Article  CAS  Google Scholar 

  108. Birks J . Cholinesterase inhibitors for Alzheimer's disease. Cochrane Database Syst Rev 2006 (Issue 1. Art. No.: CD005593. doi:10.1002/14651858.CD005593).

  109. Friedman JI, Temporini H, Davis KL . Pharmacologic strategies for augmenting cognitive performance in schizophrenia. Biol Psychiatry 1999; 45: 1–16.

    Article  CAS  PubMed  Google Scholar 

  110. Ferreri F, Agbokou C, Gauthier S . Cognitive dysfunctions in schizophrenia: potential benefits of cholinesterase inhibitor adjunctive therapy. J Psychiatry Neurosci 2006; 31: 369–376.

    PubMed  PubMed Central  Google Scholar 

  111. Raedler TJ, Bymaster FP, Tandon R, Copolov D, Dean B . Towards a muscarinic hypothesis of schizophrenia. Mol Psychiatry 2007; 12: 232–246.

    Article  CAS  PubMed  Google Scholar 

  112. Bymaster FP, Felder C, Ahmed S, McKinzie D . Muscarinic receptors as a target for drugs treating schizophrenia. Curr Drug Targets CNS Neurol Disord 2002; 1: 163–181.

    Article  CAS  PubMed  Google Scholar 

  113. Sur C, Mallorga PJ, Wittmann M, Jacobson MA, Pascarella D, Williams JB et al. N-desmethylclozapine, an allosteric agonist at muscarinic 1 receptor, potentiates N-methyl-D-aspartate receptor activity. Proc Natl Acad Sci USA 2003; 100: 13674–13679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Watson J, Brough S, Coldwell MC, Gager T, Ho M, Hunter AJ et al. Functional effects of the muscarinic receptor agonist, xanomeline, at 5-HT1 and 5-HT2 receptors. Br J Pharmacol 1998; 125: 1413–1420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Mirza NR, Peters D, Sparks RG . Xanomeline and the antipsychotic potential of muscarinic receptor subtype selective agonists. CNS Drug Rev 2003; 9: 159–186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Lazareno S, Popham A, Birdsall NJ . Progress toward a high-affinity allosteric enhancer at muscarinic M1 receptors. J Mol Neurosci 2003; 20: 363–367.

    Article  CAS  PubMed  Google Scholar 

  117. Kumari V, Postma P . Nicotine use in schizophrenia: the self medication hypotheses. Neurosci Biobehav Rev 2005; 29: 1021–1034.

    Article  CAS  PubMed  Google Scholar 

  118. Simosky JK, Stevens KE, Freedman R . Nicotinic agonists and psychosis. Curr Drug Targets CNS Neurol Disord 2002; 1: 149–162.

    Article  CAS  PubMed  Google Scholar 

  119. Simosky JK, Stevens KE, Kem WR, Freedman R . Intragastric DMXB-A, an alpha7 nicotinic agonist, improves deficient sensory inhibition in DBA/2 mice. Biol Psychiatry 2001; 50: 493–500.

    Article  CAS  PubMed  Google Scholar 

  120. Olincy A, Harris JG, Johnson LL, Pender V, Kongs S, Allensworth D et al. Proof-of-concept trial of an alpha7 nicotinic agonist in schizophrenia. Arch Gen Psychiatry 2006; 63: 630–638.

    Article  CAS  PubMed  Google Scholar 

  121. Levin ED, McClernon FJ, Rezvani AH . Nicotinic effects on cognitive function: behavioral characterization, pharmacological specification, and anatomic localization. Psychopharmacology (Berl) 2006; 184: 523–539.

    Article  CAS  Google Scholar 

  122. Javitt DC . Glutamate as a therapeutic target in psychiatric disorders. Mol Psychiatry 2004; 9: 979, 984–997.

    Article  Google Scholar 

  123. Javitt DC . Is the glycine site half saturated or half unsaturated? Effects of glutamatergic drugs in schizophrenia patients. Curr Opin Psychiatry 2006; 19: 151–157.

    Article  PubMed  Google Scholar 

  124. Evins AE, Fitzgerald SM, Wine L, Rosselli R, Goff DC . Placebo-controlled trial of glycine added to clozapine in schizophrenia. Am J Psychiatry 2000; 157: 826–828.

    Article  CAS  PubMed  Google Scholar 

  125. Tsai GE, Yang P, Chung LC, Tsai IC, Tsai CW, Coyle JT . D-serine added to clozapine for the treatment of schizophrenia. Am J Psychiatry 1999; 156: 1822–1825.

    CAS  PubMed  Google Scholar 

  126. Goff DC, Tsai G, Manoach DS, Flood J, Darby DG, Coyle JT . D-cycloserine added to clozapine for patients with schizophrenia. Am J Psychiatry 1996; 153: 1628–1630.

    Article  CAS  PubMed  Google Scholar 

  127. Brown A, Carlyle I, Clark J, Hamilton W, Gibson S, McGarry G et al. Discovery and SAR of org 24598-a selective glycine uptake inhibitor. Bioorg Med Chem Lett 2001; 11: 2007–2009.

    Article  CAS  PubMed  Google Scholar 

  128. Aubrey KR, Vandenberg RJ . N[3-(4′-fluorophenyl)-3-(4′-phenylphenoxy)propyl]sarcosine (NFPS) is a selective persistent inhibitor of glycine transport. Br J Pharmacol 2001; 134: 1429–1436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Tsai G, Lane HY, Yang P, Chong MY, Lange N . Glycine transporter I inhibitor, N-methylglycine (sarcosine), added to antipsychotics for the treatment of schizophrenia. Biol Psychiatry 2004; 55: 452–456.

    Article  CAS  PubMed  Google Scholar 

  130. Lane HY, Huang CL, Wu PL, Liu YC, Chang YC, Lin PY et al. Glycine transporter I inhibitor, N-methylglycine (sarcosine), added to clozapine for the treatment of schizophrenia. Biol Psychiatry 2006; 60: 645–649.

    Article  CAS  PubMed  Google Scholar 

  131. Moghaddam B . Targeting metabotropic glutamate receptors for treatment of the cognitive symptoms of schizophrenia. Psychopharmacology (Berl) 2004; 174: 39–44.

    Article  CAS  Google Scholar 

  132. Galici R, Jones CK, Hemstapat K, Nong Y, Echemendia NG, Williams LC et al. Biphenyl-indanone A, a positive allosteric modulator of the metabotropic glutamate receptor subtype 2, has antipsychotic- and anxiolytic-like effects in mice. J Pharmacol Exp Ther 2006; 318: 173–185.

    Article  CAS  PubMed  Google Scholar 

  133. Govek SP, Bonnefous C, Hutchinson JH, Kamenecka T, McQuiston J, Pracitto R et al. Benzazoles as allosteric potentiators of metabotropic glutamate receptor 2 (mGluR2): efficacy in an animal model for schizophrenia. Bioorg Med Chem Lett 2005; 15: 4068–4072.

    Article  CAS  PubMed  Google Scholar 

  134. Marino MJ, Conn PJ . Glutamate-based therapeutic approaches: allosteric modulators of metabotropic glutamate receptors. Curr Opin Pharmacol 2006; 6: 98–102.

    Article  CAS  PubMed  Google Scholar 

  135. Black MD . Therapeutic potential of positive AMPA modulators and their relationship to AMPA receptor subunits. A review of preclinical data. Psychopharmacology (Berl) 2005; 179: 154–163.

    Article  CAS  Google Scholar 

  136. Goff DC, Leahy L, Berman I, Posever T, Herz L, Leon AC et al. A placebo-controlled pilot study of the ampakine CX516 added to clozapine in schizophrenia. J Clin Psychopharmacol 2001; 21: 484–487.

    Article  CAS  PubMed  Google Scholar 

  137. Marenco S, Egan MF, Goldberg TE, Knable MB, McClure RK, Winterer G et al. Preliminary experience with an ampakine (CX516) as a single agent for the treatment of schizophrenia: a case series. Schizophr Res 2002; 57: 221–226.

    Article  PubMed  Google Scholar 

  138. Vanover KE . Effects of AMPA receptor antagonists on dopamine-mediated behaviors in mice. Psychopharmacology (Berl) 1998; 136: 123–131.

    Article  CAS  Google Scholar 

  139. Mathe JM, Fagerquist MV, Svensson TH . Antipsychotic-like effect of the AMPA receptor antagonist LY326325 as indicated by suppression of conditioned avoidance response in the rat. J Neural Transm 1999; 106: 1003–1009.

    Article  CAS  PubMed  Google Scholar 

  140. Moghaddam B, Adams B, Verma A, Daly D . Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. J Neurosci 1997; 17: 2921–2927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Henquet C, Murray R, Linszen D, van Os J . The environment and schizophrenia: the role of cannabis use. Schizophr Bull 2005; 31: 608–612.

    Article  PubMed  Google Scholar 

  142. Vinod KY, Hungund BL . Cannabinoid-1 receptor: a novel target for the treatment of neuropsychiatric disorders. Expert Opin Ther Targets 2006; 10: 203–210.

    Article  CAS  PubMed  Google Scholar 

  143. Poncelet M, Barnouin MC, Breliere JC, Le Fur G, Soubrie P . Blockade of cannabinoid (CB1) receptors by 141716 selectively antagonizes drug-induced reinstatement of exploratory behaviour in gerbils. Psychopharmacology (Berl) 1999; 144: 144–150.

    Article  CAS  Google Scholar 

  144. Alonso R, Voutsinos B, Fournier M, Labie C, Steinberg R, Souilhac J et al. Blockade of cannabinoid receptors by SR141716 selectively increases Fos expression in rat mesocorticolimbic areas via reduced dopamine D2 function. Neuroscience 1999; 91: 607–620.

    Article  CAS  PubMed  Google Scholar 

  145. Husum H, Vasquez PA, Mathe AA . Changed concentrations of tachykinins and neuropeptide Y in brain of a rat model of depression: lithium treatment normalizes tachykinins. Neuropsychopharmacology 2001; 24: 183–191.

    Article  CAS  PubMed  Google Scholar 

  146. Kramer MS, Cutler N, Feighner J, Shrivastava R, Carman J, Sramek JJ et al. Distinct mechanism for antidepressant activity by blockade of central substance P receptors. Science 1998; 281: 1640–1645.

    Article  CAS  PubMed  Google Scholar 

  147. Tooney PA, Crawter VC, Chahl LA . Increased tachykinin NK(1) receptor immunoreactivity in the prefrontal cortex in schizophrenia. Biol Psychiatry 2001; 49: 523–527.

    Article  CAS  PubMed  Google Scholar 

  148. Keller M, Montgomery S, Ball W, Morrison M, Snavely D, Liu G et al. Lack of efficacy of the substance p (neurokinin1 receptor) antagonist aprepitant in the treatment of major depressive disorder. Biol Psychiatry 2006; 59: 216–223.

    Article  CAS  PubMed  Google Scholar 

  149. Meltzer H, Prus A . NK3 receptor antagonists for the treatment of schizophrenia. Drug Discov Today 2006; 3: 555–560.

    Google Scholar 

  150. Caceda R, Kinkead B, Nemeroff CB . Neurotensin: role in psychiatric and neurological diseases. Peptides 2006; 27: 2385–2404.

    Article  CAS  PubMed  Google Scholar 

  151. Feifel D, Reza TL, Wustrow DJ, Davis MD . Novel antipsychotic-like effects on prepulse inhibition of startle produced by a neurotensin agonist. J Pharmacol Exp Ther 1999; 288: 710–713.

    CAS  PubMed  Google Scholar 

  152. Riedel M, Strassnig M, Schwarz MJ, Muller N . COX-2 inhibitors as adjunctive therapy in schizophrenia: rationale for use and evidence to date. CNS Drugs 2005; 19: 805–819.

    Article  CAS  PubMed  Google Scholar 

  153. Muller N, Ulmschneider M, Scheppach C, Schwarz MJ, Ackenheil M, Moller HJ et al. COX-2 inhibition as a treatment approach in schizophrenia: immunological considerations and clinical effects of celecoxib add-on therapy. Eur Arch Psychiatry Clin Neurosci 2004; 254: 14–22.

    Article  PubMed  Google Scholar 

  154. Menniti FS, Chappie TA, Humphrey JM, Schmidt CJ . Phosphodiesterase 10A inhibitors: a novel approach to the treatment of the symptoms of schizophrenia. Curr Opin Investig Drugs 2007; 8: 54–59.

    CAS  PubMed  Google Scholar 

  155. Sheitman BB, Knable MB, Jarskog LF, Chakos M, Boyce LH, Early J et al. Secretin for refractory schizophrenia. Schizophr Res 2004; 66: 177–181.

    Article  PubMed  Google Scholar 

  156. Maurice T, Phan VL, Urani A, Kamei H, Noda Y, Nabeshima T . Neuroactive neurosteroids as endogenous effectors for the sigma1 (sigma1) receptor: pharmacological evidence and therapeutic opportunities. Jpn J Pharmacol 1999; 81: 125–155.

    Article  CAS  PubMed  Google Scholar 

  157. Noda Y, Kamei H, Kamei Y, Nagai T, Nishida M, Nabeshima T . Neurosteroids ameliorate conditioned fear stress: an association with sigma receptors. Neuropsychopharmacology 2000; 23: 276–284.

    Article  CAS  PubMed  Google Scholar 

  158. Strous RD, Maayan R, Lapidus R, Stryjer R, Lustig M, Kotler M et al. Dehydroepiandrosterone augmentation in the management of negative, depressive, and anxiety symptoms in schizophrenia. Arch Gen Psychiatry 2003; 60: 133–141.

    Article  CAS  PubMed  Google Scholar 

  159. Spedding M, Jay T, Costa e Silva J, Perret L . A pathophysiological paradigm for the therapy of psychiatric disease. Nat Rev Drug Discov 2005; 4: 467–476.

    Article  CAS  PubMed  Google Scholar 

  160. Kelsoe JR . Genomics and the Human Genome Project: implications for psychiatry. Int Rev Psychiatry 2004; 16: 294–300.

    Article  PubMed  Google Scholar 

  161. Carlsson M, Carlsson A . Schizophrenia: a subcortical neurotransmitter imbalance syndrome? Schizophr Bull 1990; 16: 425–432.

    Article  CAS  PubMed  Google Scholar 

  162. Harrison PJ, Weinberger DR . Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry 2005; 10: 40–68; image 45.

    Article  CAS  PubMed  Google Scholar 

  163. Sawa A, Snyder SH . Schizophrenia: neural mechanisms for novel therapies. Mol Med 2003; 9: 3–9.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Insel TR, Scolnick EM . Cure therapeutics and strategic prevention: raising the bar for mental health research. Mol Psychiatry 2006; 11: 11–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Ross CA, Margolis RL, Reading SA, Pletnikov M, Coyle JT . Neurobiology of schizophrenia. Neuron 2006; 52: 139–153.

    Article  CAS  PubMed  Google Scholar 

  166. Hyman SE, Nestler EJ . Initiation and adaptation: a paradigm for understanding psychotropic drug action. Am J Psychiatry 1996; 153: 151–162.

    Article  CAS  PubMed  Google Scholar 

  167. Rapoport JL, Addington AM, Frangou S, Psych MR . The neurodevelopmental model of schizophrenia: update 2005. Mol Psychiatry 2005; 10: 434–449.

    Article  CAS  PubMed  Google Scholar 

  168. Kim SF, Huang AS, Snowman AM, Teuscher C, Snyder SH . From the cover: antipsychotic drug-induced weight gain mediated by histamine H1 receptor-linked activation of hypothalamic AMP-kinase. Proc Natl Acad Sci USA 2007; 104: 3456–3459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J A Gray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gray, J., Roth, B. The pipeline and future of drug development in schizophrenia. Mol Psychiatry 12, 904–922 (2007). https://doi.org/10.1038/sj.mp.4002062

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4002062

Keywords

This article is cited by

Search

Quick links