Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Association of graded allele-specific changes in CYP2D6 function with imipramine dose requirement in a large group of depressed patients

Abstract

The inactivation and clearance of the tricyclic antidepressant imipramine is dependent on CYP2D6 activity. First, CYP2C19 converts imipramine into the active metabolite desipramine, which is then inactivated by CYP2D6. This retrospective single center study aimed to prove whether CYP2C19 and ample CYP2D6 genotyping (taking into consideration four null alleles and three decreased-activity alleles) could be used to predict imipramine and desipramine plasma concentrations in depressed patients, and whether genotype-based drug dose recommendations might assist in the early management of imipramine pharmacotherapy. In 181 subjects with major depressive disorder, drug doses were recorded, imipramine and desipramine plasma concentrations were monitored and CYP2C19 (*2) and CYP2D6 genotype (*3, *4, *5, *6, *9, *10, *41 and gene duplication) were obtained, yielding graded allele-specific CYP2D6 patient groups. Desipramine and imipramine+desipramine plasma concentration per drug dose unit, imipramine dose at steady state, and imipramine dose requirement significantly depended on CYP2D6 genotype (Kruskal–Wallis test, P<0.0001). Mean (±s.d.) drug dose requirements were 131 (±109), 155 (±70), 217 (±95), 245 (±125), 326 (±213), and 509 (±292) mg imipramine/day in carriers of 0, 0.5, 1, 1.5, 2, and >2 active CYP2D6 genes, respectively. Our protocol for CYP2D6 genotyping will thus importantly aid in the prediction of imipramine metabolism, allowing for the use of an adjusted starting dose and faster achievement of predefined imipramine+desipramine plasma levels in all genetic patient subgroups. Therefore, therapeutic efficacy and efficiency may be improved, the number of adverse drug reactions decreased, and hospital stay reduced.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Slattery DA, Hudson AL, Nutt DJ . Invited review: the evolution of antidepressant mechanisms. Fundam Clin Pharmacol 2004; 18: 1–21.

    Article  CAS  Google Scholar 

  2. Brøsen K . Some aspects of genetic polymorphism in the biotransformation of antidepressants. Therapie 2004; 59: 5–12.

    Article  Google Scholar 

  3. Steimer W, Zöpf K, Von Amelunxen S, Pfeiffer H, Bachofer J, Popp J et al. Allele-specific change of concentration and functional gene dose for the prediction of steady-state serum concentrations of amitriptyline and nortriptyline in CYP2C19 and CYP2D6 extensive and intermediate metabolizers. Clin Chem 2004; 50: 1623–1633.

    Article  CAS  Google Scholar 

  4. Gram LF . Metabolism of tricyclic antidepressants: a review. Dan Med Bull 1974; 21: 218–231.

    CAS  PubMed  Google Scholar 

  5. Preskorn SH, Dorey RC, Jerkovich GS . Therapeutic drug monitoring of tricyclic antidepressants. Clin Chem 1988; 34: 822–828.

    CAS  PubMed  Google Scholar 

  6. Meyer UA . Pharmacogenetics and adverse drug reactions. Lancet 2000; 356: 1667–1671.

    Article  CAS  Google Scholar 

  7. Perry PJ, Zeilmann C, Arndt S . Tricyclic antidepressant concentrations in plasma: an estimate of their sensitivity and specificity as a predictor of response. J Clin Psychopharmacol 1994; 14: 230–240.

    Article  CAS  Google Scholar 

  8. Madsen H, Rasmussen BB, Brøsen K . Imipramine demethylation in vivo: impact of CYP1A2, CYP2C19, and CYP3A4. Clin Pharmacol Ther 1997; 61: 319–324.

    Article  CAS  Google Scholar 

  9. Linder MW, Prough RA, Valdes Jr R . Pharmacogenetics: a laboratory tool for optimizing therapeutic efficiency. Clin Chem 1997; 43: 254–266.

    CAS  PubMed  Google Scholar 

  10. Perry PJ, Pfohl BM, Holstad SG . The relationship between antidepressant response and tricyclic antidepressant plasma concentrations. A retrospective analysis of the literature using logistic regression analysis. Clin Pharmacokinet 1987; 13: 381–392.

    Article  CAS  Google Scholar 

  11. Qin X-P, Xie H-G, Wang W, He N, Huang S-L, Xu Z-H et al. Effect of the gene dosage of CYP2C19 on diazepam metabolism in Chinese subjects. Clin Pharmacol Ther 1999; 66: 642–646.

    Article  CAS  Google Scholar 

  12. Zanger UM, Fischer J, Raimundo S, Stüven T, Evert BO, Schwab M et al. Comprehensive analysis of the genetic factors determining expression and function of hepatic CYP2D6. Pharmacogenetics 2001; 11: 573–585.

    Article  CAS  Google Scholar 

  13. Griese E-U, Zanger UM, Brudermanns U, Gaedigk A, Mikus G, Mörike K et al. Assessment of the predictive power of genotypes for the in-vivo catalytic function of CYP2D6 in a German population. Pharmacogenetics 1998; 8: 15–26.

    Article  CAS  Google Scholar 

  14. Bergmann TK, Bathum L, Brosen K . Duplication of CYP2D6 predicts high clearance of desipramine but high clearance does not predict duplication of CYP2D6. Eur J Clin Pharmacol 2001; 57: 123–127.

    Article  CAS  Google Scholar 

  15. Gaedigk A, Gotschall RR, Forbes NS, Simon SD, Kearns GL, Leeder JS . Optimization of cytochrome P4502D6 (CYP2D6) phenotype assignment using a genotyping algorithm based on allele frequency data. Pharmacogenetics 1999; 9: 669–682.

    Article  CAS  Google Scholar 

  16. Steijns LSW, Van Der Weide J . Ultrarapid drug metabolism: PCR-based detection of CYP2D6 gene duplication. Clin Chem 1998; 44: 914–917.

    CAS  PubMed  Google Scholar 

  17. Zanger UM, Raimundo S, Eichelbaum M . Cytochrome P450 2D6: overview and update on pharmacology, genetics, biochemistry. Naunyn Schmiedebergs Arch Pharmacol 2004; 369: 23–37.

    Article  CAS  Google Scholar 

  18. Rau T, Wohlleben G, Wuttke H, Thuerauf N, Lunkenheimer J, Lanczik M et al. CYP2D6 genotype: impact on adverse effects and nonresponse during treatment with antidepressants—a pilot study. Clin Pharmacol Ther 2004; 75: 386–393.

    Article  CAS  Google Scholar 

  19. De Leon J, Susce MT, Pan R-M, Fairchild M, Koch WH, Wedlund PJ . The CYP2D6 poor metabolizer phenotype may be associated with risperidone adverse drug reactions and discontinuation. J Clin Psychiatry 2005; 66: 15–27.

    Article  CAS  Google Scholar 

  20. Mulder H, Wilmink FW, Beumer TL, Tamminga WJ, Jedema JN, Egberts ACG . The association between cytochrome P450 2D6 genotype and prescription patterns of antipsychotic and antidepressant drugs in hospitalized psychiatric patients: a retrospective follow-up study. J Clin Psychopharmacol 2005; 25: 188–191.

    Article  Google Scholar 

  21. Furman KD, Grimm DR, Mueller T, Holley-Shanks RR, Bertz RJ, Williams LA et al. Impact of CYP2D6 intermediate metabolizer alleles on single-dose desipramine pharmacokinetics. Pharmacogenetics 2004; 14: 279–284.

    Article  CAS  Google Scholar 

  22. Raimundo S, Fischer J, Eichelbaum M, Griese E-U, Schwab M, Zanger UM . Elucidation of the genetic basis of the common ‘intermediate metabolizer’ phenotype for drug oxidation by CYP2D6. Pharmacogenetics 2000; 10: 577–581.

    Article  CAS  Google Scholar 

  23. Steimer W, Potter JM . Pharmacogenetic screening and therapeutic drugs. Clin Chim Acta 2002; 315: 137–155.

    Article  CAS  Google Scholar 

  24. De Morais SM, Wilkinson GR, Blaisdell J, Nakamura K, Meyer UA, Goldstein JA . The major genetic defect responsible for the polymorphism of S-mephenytoin metabolism in humans. J Biol Chem 1994; 269: 15419–15422.

    CAS  PubMed  Google Scholar 

  25. http://www.imm.ki.se/CYPalleles/. Home page of the Human Cytochrome P450 (CYP) Allele Nomenclature Committee. Accessed November 2006.

  26. Hamilton M . A rating scale for depression. J Neurol Neurosurg Psychiatry 1960; 23: 56–62.

    Article  CAS  Google Scholar 

  27. Grasmäder K, Verwohlt PL, Rietschel M, Dragicevic A, Müller M, Hiemke C et al. Impact of polymorphisms of cytochrome-P450 isoenzymes 2C9, 2C19 and 2D6 on plasma concentrations and clinical effects of antidepressants in a naturalistic clinical setting. Eur J Clin Pharmacol 2004; 60: 329–336.

    PubMed  Google Scholar 

  28. Informatorium Medicamentorum. Koninklijke Nederlandse Maatschappij ter bevordering der Pharmacie: The Hague, The Netherlands 2006.

  29. Parfitt K (ed). Martindale: The Complete Drug Reference. Pharmaceutical Press: London, UK, 1999.

    Google Scholar 

  30. Goldstein JA, Blaisdell J . Genetic tests which identify the principal defects in CYP2C19 responsible for the polymorphism in mephenytoin metabolism. Methods Enzymol 1996; 272: 210–218.

    Article  CAS  Google Scholar 

  31. Armstrong M, Idle JR, Daly AK . A polymorphic CfoI site in exon 6 of the human cytochrome P450 CYP2D6 gene detected by the polymerase chain reaction. Hum Genet 1993; 91: 616–617.

    Article  CAS  Google Scholar 

  32. Topic E, Stefanovic M, Nikolic V, Zoricic I, Ivanisevic A-M, Zuntar I . Detection of CYP2D6*3 and 2D6*4 allelic variants by PCR-restriction fragment length polymorphism. Clin Chem Lab Med 1998; 36: 655–658.

    Article  CAS  Google Scholar 

  33. Van der Weide J, Steijns LSW . Impaired drug metabolism: detection of the nonfunctional CYP2D6*6 allele by an allele-specific oligonucleotide hybridisation method. Ned Tijdschr Klin Chem 1998; 23: 245–248.

    CAS  Google Scholar 

  34. Gaedigk A, Ryder DL, Bradford LD, Leeder JS . CYP2D6 poor metabolizer status can be ruled out by a single genotyping assay for the -1584G promoter polymorphism. Clin Chem 2003; 49: 1008–1011.

    Article  CAS  Google Scholar 

  35. Raimundo S, Toscano C, Klein K, Fischer J, Griese E-U, Eichelbaum M et al. A novel intronic mutation, 2988G&gt;A, with high predictivity for impaired function of cytochrome P450 2D6 in white subjects. Clin Pharmacol Ther 2004; 76: 128–138.

    Article  CAS  Google Scholar 

  36. Steen VM, Andreassen OA, Daly AK, Tefre T, Børresen AL, Idle JR et al. Detection of the poor metabolizer-associated CYP2D6(D) gene deletion allele by long-PCR technology. Pharmacogenetics 1995; 5: 215–223.

    Article  CAS  Google Scholar 

  37. Løvlie R, Daly AK, Molven A, Idle JR, Steen VM . Ultrarapid metabolizers of debrisoquine: characterization and PCR-based detection of alleles with duplication of the CYP2D6 gene. FEBS Lett 1996; 392: 30–34.

    Article  Google Scholar 

  38. Brøsen K, Klysner R, Gram LF, Otton SV, Bech P, Bertilsson L . Steady-state concentrations of imipramine and its metabolites in relation to the sparteine/debrisoquine polymorphism. Eur J Clin Pharmacol 1986; 30: 679–684.

    Article  Google Scholar 

  39. Tyndale R, Aoyama T, Broly F, Matsunaga T, Inaba T, Kalow W et al. Identification of a new variant CYP2D6 allele lacking the codon encoding Lys-281: possible association with the poor metabolizer phenotype. Pharmacogenetics 1991; 1: 26–32.

    Article  CAS  Google Scholar 

  40. Broly F, Meyer UA . Debrisoquine oxidation polymorphism: phenotypic consequences of a 3-base-pair deletion in exon 5 of the CYP2D6 gene. Pharmacogenetics 1993; 3: 123–130.

    Article  CAS  Google Scholar 

  41. Johansson I, Oscarson M, Yue Q-Y, Bertilsson L, Sjöqvist F, Ingelman-Sundberg M . Genetic analysis of the Chinese cytochrome P4502D locus: characterization of variant CYP2D6 genes present in subjects with diminished capacity for debrisoquine hydroxylation. Mol Pharmacol 1994; 46: 452–459.

    CAS  PubMed  Google Scholar 

  42. Kootstra-Ros JE, Van Weelden MJM, Hinrichs JWJ, De Smet PAGM, Van der Weide J . Therapeutic drug monitoring of antidepressants and cytochrome P450 genotyping in general practice. J Clin Pharmacol 2006; 46: 1320–1327.

    Article  CAS  Google Scholar 

  43. Product Information: Tofranil, Imipramine. Geigy Pharmaceuticals: Summit, NJ, 1995.

  44. Kropp S, Lichtinghagen R, Winterstein K, Schlimme J, Schneider U . Cytochrome P-450 2D6 and 2C19 polymorphisms and length of hospitalization in psychiatry. Clin Lab 2006; 52: 237–240.

    CAS  PubMed  Google Scholar 

  45. Marez D, Legrand M, Sabbagh N, Lo Guidice J-M, Spire C, Lafitte J-J et al. Polymorphism of the cytochrome P450 CYP2D6 gene in a European population: characterization of 48 mutations and 53 alleles, their frequencies and evolution. Pharmacogenetics 1997; 7: 193–202.

    Article  CAS  Google Scholar 

  46. Tamminga WJ, Wemer J, Oosterhuis B, De Zeeuw RA, De Leij LFMH, Jonkman JHG . The prevalence of CYP2D6 and CYP2C19 genotypes in a population of healthy Dutch volunteers. Eur J Clin Pharmacol 2001; 57: 717–722.

    Article  CAS  Google Scholar 

  47. De Leon J, Barnhill J, Rogers T, Boyle J, Chou W-H, Wedlund PJ . Pilot study of the cytochrome P450-2D6 genotype in a psychiatric state hospital. Am J Psychiatry 1998; 155: 1278–1280.

    Article  CAS  Google Scholar 

  48. Steimer W, Müller B, Leucht S, Kissling W . Pharmacogenetics: genotyping of cytochromes P450 2D6 and 2C19 in psychiatric patients treated with tricyclic antidepressants (TCA) or neuroleptics (Abstract). Ther Drug Monit 1999; 21: 474.

    Article  Google Scholar 

  49. Shimoda K, Someya T, Yokono A, Morita S, Hirokane G, Takahashi S et al. Impact of CYP2C19 and CYP2D6 genotypes on metabolism of amitriptyline in Japanese psychiatric patients. J Clin Psychopharmacol 2002; 22: 371–378.

    Article  CAS  Google Scholar 

  50. Koyama E, Tanaka T, Chiba K, Kawakatsu S, Morinobu S, Totsuka S et al. Steady-state plasma concentrations of imipramine and desipramine in relation to S-mephenytoin 4′-hydroxylation status in Japanese depressive patients. J Clin Psychopharmacol 1996; 16: 286–293.

    Article  CAS  Google Scholar 

  51. Amitai Y, Frischer H . Excess fatality from desipramine and dosage recommendations. Ther Drug Monit 2004; 26: 468–473.

    Article  CAS  Google Scholar 

  52. Kirchheiner J, Nickchen K, Bauer M, Wong M-L, Licinio J, Roots I et al. Pharmacogenetics of antidepressants and antipsychotics: the contribution of allelic variations to the phenotype of drug response. Mol Psychiatry 2004; 9: 442–473.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Part of this work was supported by an internal grant (Erasmus MC Revolving Fund, Top-Down, MEC 194.305/2000/168B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R H N van Schaik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schenk, P., van Fessem, M., Verploegh-Van Rij, S. et al. Association of graded allele-specific changes in CYP2D6 function with imipramine dose requirement in a large group of depressed patients. Mol Psychiatry 13, 597–605 (2008). https://doi.org/10.1038/sj.mp.4002057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4002057

Keywords

This article is cited by

Search

Quick links