Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Mice lacking the AMPA GluR1 receptor exhibit striatal hyperdopaminergia and ‘schizophrenia-related’ behaviors

Abstract

There is growing evidence implicating dysfunctional glutamatergic neurotransmission and abnormal interactions between the glutamate and dopamine (DA) systems in the pathophysiology of various neuropsychiatric disorders including schizophrenia. The present study evaluated knockout (KO) mice lacking the L-α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) GluR1 receptor subunit for a range of behaviors considered relevant to certain symptoms of schizophrenia. KO showed locomotor hyperactivity during exposure to open field and in response to a novel object, but normal activity in a familiar home cage. Open field locomotor hyperactivity in KO was effectively normalized to WT levels by treatment with the DA antagonist and neuroleptic haloperidol, while locomotor stimulant effects of the NMDA receptor antagonist MK-801 were absent in KO. Social behaviors during a dyadic conspecific encounter were disorganized in KO. KO showed deficits in prepulse inhibition of the acoustic startle response. In vivo chronoamperometric measurement of extracellular DA clearance in striatum demonstrated retarded clearance in KO. These data demonstrate behavioral abnormalities potentially pertinent to schizophrenia in GluR1 KO, together with evidence of dysregulated DA function. Present findings provide novel insight into the potential role of GluR1, AMPA receptors and glutamate × DA interactions in the pathophysiology of schizophrenia and other neuropsychiatric conditions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Harrison PJ, Weinberger DR . Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry 2005; 10: 40–68; image 5.

    Article  CAS  PubMed  Google Scholar 

  2. Coyle JT . Glutamate and schizophrenia: beyond the dopamine hypothesis. Cell Mol Neurobiol 2006; 26: 365–384.

    Article  CAS  PubMed  Google Scholar 

  3. Krystal JH, Anand A, Moghaddam B . Effects of NMDA receptor antagonists: implications for the pathophysiology of schizophrenia. Arch Gen Psychiatry 2002; 59: 663–664.

    Article  PubMed  Google Scholar 

  4. Olney JW, Newcomer JW, Farber NB . NMDA receptor hypofunction model of schizophrenia. J Psychiatr Res 1999; 33: 523–533.

    Article  CAS  PubMed  Google Scholar 

  5. Lewis DA, Gonzalez-Burgos G . Pathophysiologically based treatment interventions in schizophrenia. Nat Med 2006; 12: 1016–1022.

    Article  CAS  PubMed  Google Scholar 

  6. Malenka RC . The long-term potential of LTP. Nat Rev Neurosci 2003; 4: 923–926.

    Article  CAS  PubMed  Google Scholar 

  7. Malinow R, Malenka RC . AMPA receptor trafficking and synaptic plasticity. Annu Rev Neurosci 2002; 25: 103–126.

    Article  CAS  PubMed  Google Scholar 

  8. Eastwood SL, Kerwin RW, Harrison PJ . Immunoautoradiographic evidence for a loss of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate-preferring non-N-methyl-D-aspartate glutamate receptors within the medial temporal lobe in schizophrenia. Biol Psychiatry 1997; 41: 636–643.

    Article  CAS  PubMed  Google Scholar 

  9. Sokolov BP . Expression of NMDAR1, GluR1, GluR7, and KA1 glutamate receptor mRNAs is decreased in frontal cortex of ‘neuroleptic-free’ schizophrenics: evidence on reversible up-regulation by typical neuroleptics. J Neurochem 1998; 71: 2454–2464.

    Article  CAS  PubMed  Google Scholar 

  10. Meador-Woodruff JH, Hogg Jr AJ, Smith RE . Striatal ionotropic glutamate receptor expression in schizophrenia, bipolar disorder, and major depressive disorder. Brain Res Bull 2001; 55: 631–640.

    Article  CAS  PubMed  Google Scholar 

  11. Toyooka K, Iritani S, Makifuchi T, Shirakawa O, Kitamura N, Maeda K et al. Selective reduction of a PDZ protein, SAP-97, in the prefrontal cortex of patients with chronic schizophrenia. J Neurochem 2002; 83: 797–806.

    Article  CAS  PubMed  Google Scholar 

  12. O'Neill MJ, Bleakman D, Zimmerman DM, Nisenbaum ES . AMPA receptor potentiators for the treatment of CNS disorders. Curr Drug Targets CNS Neurol Disord 2004; 3: 181–194.

    Article  CAS  PubMed  Google Scholar 

  13. Marenco S, Weinberger DR . Therapeutic potential of positive AMPA receptor modulators in the treatment of neuropsychiatric disorders. CNS Drugs 2006; 20: 173–185.

    Article  CAS  PubMed  Google Scholar 

  14. Sklar P, Pato MT, Kirby A, Petryshen TL, Medeiros H, Carvalho C et al. Genome-wide scan in Portuguese Island families identifies 5q31-5q35 as a susceptibility locus for schizophrenia and psychosis. Mol Psychiatry 2004; 9: 213–218.

    Article  CAS  PubMed  Google Scholar 

  15. Gogos JA, Gerber DJ . Schizophrenia susceptibility genes: emergence of positional candidates and future directions. Trends Pharmacol Sci 2006; 27: 226–233.

    Article  CAS  PubMed  Google Scholar 

  16. Ross CA, Margolis RL, Reading SA, Pletnikov M, Coyle JT . Neurobiology of schizophrenia. Neuron 2006; 52: 139–153.

    Article  CAS  PubMed  Google Scholar 

  17. Magri C, Gardella R, Barlati SD, Podavini D, Iatropoulos P, Bonomi S et al. Glutamate AMPA receptor subunit 1 gene (GRIA1) and DSM-IV-TR schizophrenia: a pilot case-control association study in an Italian sample. Am J Med Genet B Neuropsychiatr Genet 2006; 141: 287–293.

    Article  Google Scholar 

  18. Cryan JF, Holmes A . The ascent of mouse: advances in modelling human depression and anxiety. Nat Rev Drug Discov 2005; 4: 775–790.

    Article  CAS  PubMed  Google Scholar 

  19. Seeburg PH, Single F, Kuner T, Higuchi M, Sprengel R . Genetic manipulation of key determinants of ion flow in glutamate receptor channels in the mouse. Brain Res 2001; 907: 233–243.

    Article  CAS  PubMed  Google Scholar 

  20. Holmes A, Lachowicz JE, Sibley DR . Phenotypic analysis of dopamine receptor knockout mice; recent insights into the functional specificity of dopamine receptor subtypes. Neuropharmacology 2004; 47: 1117–1134.

    Article  CAS  PubMed  Google Scholar 

  21. Arguello PA, Gogos JA . Modeling madness in mice: one piece at a time. Neuron 2006; 52: 179–196.

    Article  CAS  PubMed  Google Scholar 

  22. Chen J, Lipska BK, Weinberger DR . Genetic mouse models of schizophrenia: from hypothesis-based to susceptibility gene-based models. Biol Psychiatry 2006; 59: 1180–1188.

    Article  CAS  PubMed  Google Scholar 

  23. Powell CM, Miyakawa T . Schizophrenia-relevant behavioral testing in rodent models: a uniquely human disorder? Biol Psychiatry 2006; 59: 1198–1207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Morishima Y, Miyakawa T, Furuyashiki T, Tanaka Y, Mizuma H, Nakanishi S . Enhanced cocaine responsiveness and impaired motor coordination in metabotropic glutamate receptor subtype 2 knockout mice. Proc Natl Acad Sci USA 2005; 102: 4170–4175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Szumlinski KK, Lominac KD, Kleschen MJ, Oleson EB, Dehoff MH, Schwarz MK et al. Behavioral and neurochemical phenotyping of Homer1 mutant mice: possible relevance to schizophrenia. Genes Brain Behav 2005; 4: 273–288.

    Article  CAS  PubMed  Google Scholar 

  26. Mohn AR, Gainetdinov RR, Caron MG, Koller BH . Mice with reduced NMDA receptor expression display behaviors related to schizophrenia. Cell 1999; 98: 427–436.

    Article  CAS  PubMed  Google Scholar 

  27. Tsai G, Ralph-Williams RJ, Martina M, Bergeron R, Berger-Sweeney J, Dunham KS et al. Gene knockout of glycine transporter 1: characterization of the behavioral phenotype. Proc Natl Acad Sci USA 2004; 101: 8485–8490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Miyakawa T, Leiter LM, Gerber DJ, Gainetdinov RR, Sotnikova TD, Zeng H et al. Conditional calcineurin knockout mice exhibit multiple abnormal behaviors related to schizophrenia. Proc Natl Acad Sci USA 2003; 100: 8987–8992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ballard TM, Pauly-Evers M, Higgins GA, Ouagazzal AM, Mutel V, Borroni E et al. Severe impairment of NMDA receptor function in mice carrying targeted point mutations in the glycine binding site results in drug-resistant nonhabituating hyperactivity. J Neurosci 2002; 22: 6713–6723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zamanillo D, Sprengel R, Hvalby O, Jensen V, Burnashev N, Rozov A et al. Importance of AMPA receptors for hippocampal synaptic plasticity but not for spatial learning. Science 1999; 284: 1805–1811.

    Article  CAS  PubMed  Google Scholar 

  31. Schmitt WB, Deacon RM, Seeburg PH, Rawlins JN, Bannerman DM . A within-subjects, within-task demonstration of intact spatial reference memory and impaired spatial working memory in glutamate receptor-A-deficient mice. J Neurosci 2003; 23: 3953–3959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Reisel D, Bannerman DM, Schmitt WB, Deacon RM, Flint J, Borchardt T et al. Spatial memory dissociations in mice lacking GluR1. Nat Neurosci 2002; 5: 868–873.

    Article  CAS  PubMed  Google Scholar 

  33. Reisel D, Bannerman DM, Deacon RM, Sprengel R, Seeburg PH, Rawlins JN . GluR-A-dependent synaptic plasticity is required for the temporal encoding of nonspatial information. Behav Neurosci 2005; 119: 1298–1306.

    Article  CAS  PubMed  Google Scholar 

  34. Vekovischeva OY, Aitta-Aho T, Echenko O, Kankaanpaa A, Seppala T, Honkanen A et al. Reduced aggression in AMPA-type glutamate receptor GluR-A subunit-deficient mice. Genes Brain Behav 2004; 3: 253–265.

    Article  CAS  PubMed  Google Scholar 

  35. Vekovischeva OY, Zamanillo D, Echenko O, Seppala T, Uusi-Oukari M, Honkanen A et al. Morphine-induced dependence and sensitization are altered in mice deficient in AMPA-type glutamate receptor-A subunits. J Neurosci 2001; 21: 4451–4459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dong Y, Saal D, Thomas M, Faust R, Bonci A, Robinson T et al. Cocaine-induced potentiation of synaptic strength in dopamine neurons: behavioral correlates in GluRA(−/−) mice. Proc Natl Acad Sci USA 2004; 101: 14282–14287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Stephens DN, Mead AN . What role do GluR1 subunits play in drug abuse? Trends Neurosci 2003; 26: 181–182; author reply 182–183.

    Article  CAS  PubMed  Google Scholar 

  38. Carlsson M, Carlsson A . Interactions between glutamatergic and monoaminergic systems within the basal ganglia—implications for schizophrenia and Parkinson's disease. Trends Neurosci 1990; 13: 272–276.

    Article  CAS  PubMed  Google Scholar 

  39. Boyce-Rustay JM, Holmes A . Genetic inactivation of the NMDA receptor NR2A subunit has anxiolytic- and antidepressant-like effects in mice. Neuropsychopharmacology 2006; 31: 2405–2414.

    Article  CAS  PubMed  Google Scholar 

  40. Gainetdinov RR, Mohn AR, Bohn LM, Caron MG . Glutamatergic modulation of hyperactivity in mice lacking the dopamine transporter. Proc Natl Acad Sci USA 2001; 98: 11047–11054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Millstein RA, Ralph RJ, Yang RJ, Holmes A . Effects of repeated maternal separation on prepulse inhibition of startle across inbred mouse strains. Genes Brain Behav 2006; 5: 346–354.

    Article  CAS  PubMed  Google Scholar 

  42. Daws LC, Montanez S, Munn JL, Owens WA, Baganz NL, Boyce-Rustay JM et al. Ethanol inhibits clearance of brain serotonin by a serotonin transporter-independent mechanism. J Neurosci 2006; 26: 6431–6438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Daws LC, Montanez S, Owens WA, Gould GG, Frazer A, Toney GM et al. Transport mechanisms governing serotonin clearance in vivo revealed by high-speed chronoamperometry. J Neurosci Methods 2005; 143: 49–62.

    Article  CAS  PubMed  Google Scholar 

  44. Paxinos KBJ, Franklin G . The Mouse Brain in Stereotaxic Coordinates, 2nd edn. Academic Press: London, 2001.

    Google Scholar 

  45. Zahniser NR, Larson GA, Gerhardt GA . In vivo dopamine clearance rate in rat striatum: regulation by extracellular dopamine concentration and dopamine transporter inhibitors. J Pharmacol Exp Ther 1999; 289: 266–277.

    CAS  PubMed  Google Scholar 

  46. Hebert MA, Larson GA, Zahniser NR, Gerhardt GA . Age-related reductions in [3H]WIN 35,428 binding to the dopamine transporter in nigrostriatal and mesolimbic brain regions of the fischer 344 rat. J Pharmacol Exp Ther 1999; 288: 1334–1339.

    CAS  PubMed  Google Scholar 

  47. Bannerman DM, Deacon RM, Seeburg PH, Rawlins JN . GluR-A-Deficient mice display normal acquisition of a hippocampus-dependent spatial reference memory task but are impaired during spatial reversal. Behav Neurosci 2003; 117: 866–870.

    Article  CAS  PubMed  Google Scholar 

  48. Moghaddam B . Stress activation of glutamate neurotransmission in the prefrontal cortex: implications for dopamine-associated psychiatric disorders. Biol Psychiatry 2002; 51: 775–787.

    Article  CAS  PubMed  Google Scholar 

  49. Geyer MA, Krebs-Thomson K, Braff DL, Swerdlow NR . Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: a decade in review. Psychopharmacology (Berl) 2001; 156: 117–154.

    Article  CAS  Google Scholar 

  50. Holmes A, Wrenn CC, Harris AP, Thayer KE, Crawley JN . Behavioral profiles of inbred strains on novel olfactory, spatial and emotional tests for reference memory in mice. Genes Brain Behav 2002; 1: 55–69.

    Article  CAS  PubMed  Google Scholar 

  51. Abi-Saab WM, D'Souza DC, Moghaddam B, Krystal JH . The NMDA antagonist model for schizophrenia: promise and pitfalls. Pharmacopsychiatry 1998; 31 (Suppl 2): 104–109.

    Article  CAS  PubMed  Google Scholar 

  52. Chandler LJ, Sutton G, Dorairaj NR, Norwood D . N-methyl D-aspartate receptor-mediated bidirectional control of extracellular signal-regulated kinase activity in cortical neuronal cultures. J Biol Chem 2001; 276: 2627–2636.

    Article  CAS  PubMed  Google Scholar 

  53. Holmes A, Hollon TR, Gleason TC, Liu Z, Dreiling J, Sibley DR et al. Behavioral characterization of dopamine D5 receptor null mutant mice. Behav Neurosci 2001; 115: 1129–1144.

    Article  CAS  PubMed  Google Scholar 

  54. Zhuang X, Oosting RS, Jones SR, Gainetdinov RR, Miller GW, Caron MG et al. Hyperactivity and impaired response habituation in hyperdopaminergic mice. Proc Natl Acad Sci USA 2001; 98: 1982–1987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Amara SG, Kuhar MJ . Neurotransmitter transporters: recent progress. Annu Rev Neurosci 1993; 16: 73–93.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research supported by the National Institute on Alcohol Abuse and Alcoholism Intramural Research Program, a R01-MH64489 Grant to LCD, and NARSAD grants to LCD and AH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Holmes.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website (http://www.nature.com/mp)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiedholz, L., Owens, W., Horton, R. et al. Mice lacking the AMPA GluR1 receptor exhibit striatal hyperdopaminergia and ‘schizophrenia-related’ behaviors. Mol Psychiatry 13, 631–640 (2008). https://doi.org/10.1038/sj.mp.4002056

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4002056

Keywords

This article is cited by

Search

Quick links