Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Differentiation

Src-family kinases play an essential role in differentiation signaling downstream of macrophage colony-stimulating factor receptors mediating persistent phosphorylation of phospholipase C-γ2 and MAP kinases ERK1 and ERK2

Abstract

Macrophage colony-stimulating factor (M-CSF) has been found to be involved in multiple developmental processes, especially production of cells belonging to the mononuclear phagocyte system. The decision of myeloid progenitor cells to commit to differentiation depends on activation levels of the mitogen-activated protein kinases (MAPK), ERK1 and ERK2. Using the murine myeloid progenitor cell line FD-Fms, we show here that persistent activity of Src-family kinases (SFK) is necessary for FD-Fms cell differentiation to macrophages in response to M-CSF. Chemical inhibition of SFK blocked FD-Fms cell differentiation while it caused strong inhibition of the late phosphorylation of phospholipase C (PLC)-γ2 and MAPK. The PLC inhibitor U73122, previously shown to block M-CSF-induced differentiation, strongly decreased long-term MAPK phosphorylation. Interestingly, inhibiting SFK with SU6656 or the MAPK kinases MEK with U0126 significantly impaired development of mononuclear phagocytes in cultures of mouse bone marrow cells stimulated with M-CSF. Collectively, results support a model in which SFK are required for sustained PLC activity and MAPK activation above threshold required for commitment of myeloid progenitors to macrophage differentiation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Kahan C, Seuwen K, Meloche S, Pouyssegur J . Coordinate, biphasic activation of p44 mitogen-activated protein kinase and S6 kinase by growth factors in hamster fibroblasts. Evidence for thrombin-induced signals different from phosphoinositide turnover and adenylylcyclase inhibition. J Biol Chem 1992; 267: 13369–13375.

    CAS  Google Scholar 

  2. Qui MS, Green SH . PC12 cell neuronal differentiation is associated with prolonged p21ras activity and consequent prolonged ERK activity. Neuron 1992; 9: 705–717.

    Article  CAS  Google Scholar 

  3. Sharp LL, Schwarz DA, Bott CM, Marshall CJ, Hedrick SM . The influence of the MAPK pathway on T cell lineage commitment. Immunity 1997; 7: 609–618.

    Article  CAS  Google Scholar 

  4. Brummer T, Shaw PE, Reth M, Misawa Y . Inducible gene deletion reveals different roles for B-Raf and Raf-1 in B-cell antigen receptor signaling. EMBO J 2002; 21: 5611–5622.

    Article  CAS  Google Scholar 

  5. Matsumura I, Nakajima K, Wakao H, Hattori S, Hashimoto K, Sugahara H et al. Involvement of prolonged ras activation in thrombopoietin-induced megakaryocytic differentiation in a human factor-dependent hematopoietic cell line. Mol Cell Biol 1998; 18: 4282–4290.

    Article  CAS  Google Scholar 

  6. Garcia J, de Gunzburg J, Eychene A, Gisselbrecht S, Porteu F . Thrombopoietin-mediated sustained activation of extracellular signal-regulated kinase in UT7-Mpl cells requires both Ras-Raf-1- and Rap1-B-Raf-dependent pathways. Mol Cell Biol 2001; 21: 2659–2670.

    Article  CAS  Google Scholar 

  7. Dorrell C, Takenada K, Minden MD, Hawley RG, Dick JE . Hematopoietic cell fate and the initiation of leukemic properties in primitive primary human cells are influenced by Ras activity and farnesyltransferase inhibition. Mol Cell Biol 2004; 24: 6993–7002.

    Article  CAS  Google Scholar 

  8. Gobert-Gosse S, Bourgin C, Liu WQ, Garbay C, Mouchiroud G . M-CSF stimulated differentiation requires persistent MEK activity and MAPK phosphorylation independent of Grb2-Sos association and phosphatidylinositol 3-kinase activity. Cell Signal 2005; 17: 1352–1362.

    Article  CAS  Google Scholar 

  9. Miranda MB, Xu H, Torchia JA, Johnson DE . Cytokine-induced myeloid differentiation is dependent on activation of the MEK/ERK pathway. Leuk Res 2005; 29: 1293–1306.

    Article  CAS  Google Scholar 

  10. Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K et al. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 2001; 22: 153–183.

    CAS  Google Scholar 

  11. Torii S, Nakayama K, Yamamoto T, Nishida E . Regulatory mechanisms and function of ERK MAP kinases. J Biochem (Tokyo) 2004; 136: 557–561.

    Article  CAS  Google Scholar 

  12. Dard N, Peter M . Scaffold proteins in MAP kinase signaling: more than simple passive activating platforms. Bioessays 2006; 28: 146–156.

    Article  CAS  Google Scholar 

  13. Pixley FJ . Stanley ER CSF-1 regulation of the wandering macrophage: complexity in action. Trends Cell Biol 2004; 14: 628–638.

    Article  CAS  Google Scholar 

  14. Sasmono RT, Oceandy D, Pollard JW, Tong W, Pavli P, Wainwright BJ et al. A macrophage colony-stimulating factor receptor-green fluorescent protein transgene is expressed throughout the mononuclear phagocyte system of the mouse. Blood 2003; 101: 1155–1163.

    Article  CAS  Google Scholar 

  15. Dexter TM, Garland J, Scott D, Scolnick E, Metcalf D . Growth of factor-dependent hemopoietic precursor cell lines. J Exp Med 1980; 152: 1036–1047.

    Article  CAS  Google Scholar 

  16. Rohrschneider LR, Metcalf D . Induction of macrophage colony-stimulating factor-dependent growth and differentiation after introduction of the murine c-fms gene into FDC-P1 cells. Mol Cell Biol 1989; 9: 5081–5092.

    Article  CAS  Google Scholar 

  17. Bourette RP, Myles GM, Carlberg K, Chen AR, Rohrschneider LR . Uncoupling of the proliferation and differentiation signals mediated by the murine macrophage colony-stimulating factor receptor expressed in myeloid FDC-P1 cells. Cell Growth Differ 1995; 6: 631–645.

    CAS  Google Scholar 

  18. Fukunaga R, Ishizaka-Ikeda E, Pan CX, Seto Y, Nagata S . Functional domains of the granulocyte colony-stimulating factor receptor. EMBO J 1991; 10: 2855–2865.

    Article  CAS  Google Scholar 

  19. Nicholls SE, Winter S, Mottram R, Miyan JA, Whetton AD . Flt3 ligand can promote survival and macrophage development without proliferation in myeloid progenitor cells. Exp Hematol 1999; 27: 663–672.

    Article  CAS  Google Scholar 

  20. Bourette RP, Myles GM, Choi JL, Rohrschneider LR . Sequential activation of phoshatidylinositol 3-kinase and phospholipase C-gamma 2 by the M-CSF receptor is necessary for differentiation signaling. EMBO J 1997; 16: 5880–5893.

    Article  CAS  Google Scholar 

  21. Rohde CM, Schrum J, Lee AW . A juxtamembrane tyrosine in the colony stimulating factor-1 receptor regulates ligand-induced Src association, receptor kinase function, and down-regulation. J Biol Chem 2004; 279: 43448–43461.

    Article  CAS  Google Scholar 

  22. Marks DC, Csar XF, Wilson NJ, Novak U, Ward AC, Kanagasundarum V et al. Expression of a Y559F mutant CSF-1 receptor in M1 myeloid cells: a role for Src kinases in CSF-1 receptor-mediated differentiation. Mol Cell Biol Res Commun 1999; 1: 144–152.

    Article  CAS  Google Scholar 

  23. Roussel MF . Regulation of cell cycle entry and G1 progression by CSF-1. Mol Reprod Dev 1997; 46: 11–18.

    Article  CAS  Google Scholar 

  24. Karasuyama H, Melchers F . Establishment of mouse cell lines which constitutively secrete large quantities of interleukin 2, 3, 4, or 5 using modified cDNA expression vectors. Eur J Immunol 1988; 18: 97–104.

    Article  CAS  Google Scholar 

  25. Wang ZE, Myles GM, Brandt CS, Lioubin MN, Rohrschneider LR . Identification of the ligand-binding regions in the macrophage colony-stimulating factor receptor extracellular domain. Mol Cell Biol 1993; 13: 5348–5359.

    Article  CAS  Google Scholar 

  26. Bourgin C, Bourette RP, Arnaud S, Liu Y, Rohrschneider LR, Mouchiroud G . Induced expression and association of the Mona/Gads adapter and Gab3 scaffolding protein during monocyte/macrophage differentiation. Mol Cell Biol 2002; 22: 3744–3756.

    Article  CAS  Google Scholar 

  27. Hanke JH, Gardner JP, Dow RL, Changelian PS, Brissette WH, Weringer EJ et al. Discovery of a novel, potent, and Src family-selective tyrosine kinase inhibitor. Study of Lck- and FynT-dependent T cell activation. J Biol Chem 1996; 271: 695–701.

    Article  CAS  Google Scholar 

  28. Bain J, McLauchlan H, Elliott M, Cohen P . The specificities of protein kinase inhibitors an update. Biochem J 2003; 371: 199–204.

    Article  CAS  Google Scholar 

  29. Bourette RP, Arnaud S, Myles GM, Blanchet JP, Rohrschneider LR, Mouchiroud G . Mona, a novel hematopoietic-specific adapter interacting with the macrophage colony-stimulating factor receptor, is implicated in monocyte/macrophage development. EMBO J 1998; 17: 7273–7281.

    Article  CAS  Google Scholar 

  30. Blake RA, Broome MA, Liu X, Wu J, Gishizky M, Sun L et al. SU6656, a selective src family kinase inhibitor, used to probe growth factor signaling. Mol Cell Biol 2000; 20: 9018–9027.

    Article  CAS  Google Scholar 

  31. Dearden-Badet MT, Mouchiroud G . Re-distribution of phospholipase C gamma 2 in macrophage precursors is mediated by the actin cytoskeleton under the control of the Src kinases. Cell Signal 2005; 17: 1560–1571.

    Article  CAS  Google Scholar 

  32. Bourgin C, Bourette RP, Mouchiroud G, Arnaud S . Expression of Mona (monocytic adapter) in myeloid progenitor cells results in increased and prolonged MAP kinase activation upon macrophage colony-stimulating factor stimulation. FEBS Lett 2000; 480: 113–117.

    Article  CAS  Google Scholar 

  33. Tushinski RJ, Oliver IT, Guilbert LJ, Tynan PW, Warner JR, Stanley ER . Survival of mononuclear phagocytes depends on a lineage-specific growth factor that the differentiated cells selectively destroy. Cell 1982; 28: 71–81.

    Article  CAS  Google Scholar 

  34. Morioka Y, Naito M, Sato T, Takahashi K . Immunophenotypic and ultrastructural heterogeneity of macrophage differentiation in bone marrow and fetal hematopoiesis of mouse in vitro and in vivo. J Leukoc Biol 1994; 55: 642–651.

    Article  CAS  Google Scholar 

  35. de Bruijn MF, Slieker WA, van der Loo JC, Voerman JS, van Ewijk W, Leenen PJ . Distinct mouse bone marrow macrophage precursors identified by differential expression of ER-MP12 and ER-MP20 antigens. Eur J Immunol 1994; 24: 2279–2284.

    Article  CAS  Google Scholar 

  36. Simoncic PD, Bourdeau A, Lee-Loy A, Rohrschneider LR, Tremblay ML, Stanley ER et al. T-cell protein tyrosine phosphatase (Tcptp) is a negative regulator of colony-stimulating factor 1 signaling and macrophage differentiation. Mol Cell Biol 2006; 26: 4149–4160.

    Article  CAS  Google Scholar 

  37. Bourette RP, Grasset MF, Mouchiroud G . E2a/Pbx1 oncogene inhibits terminal differentiation but not myeloid potential of pro-T cells. Oncogene 2007; 26: 234–247.

    Article  CAS  Google Scholar 

  38. van der Geer P, Hunter T . Mutation of Tyr697, a GRB2-binding site, and Tyr721, a PI 3-kinase binding site, abrogates signal transduction by the murine CSF-1 receptor expressed in Rat-2 fibroblasts. EMBO J 1993; 12: 5161–5172.

    Article  CAS  Google Scholar 

  39. Lee AW, States DJ . Both src-dependent and -independent mechanisms mediate phosphatidylinositol 3-kinase regulation of colony-stimulating factor 1-activated mitogen-activated protein kinases in myeloid progenitors. Mol Cell Biol 2000; 20: 6779–6798.

    Article  CAS  Google Scholar 

  40. Csar XF, Wilson NJ, McMahon KA, Marks DC, Beecroft TL, Ward AC et al. Proteomic analysis of macrophage differentiation. p46/52(Shc) Tyrosine phosphorylation is required for CSF-1-mediated macrophage differentiation. J Biol Chem 2001; 276: 26211–26217.

    Article  CAS  Google Scholar 

  41. Carpenter G, Hernandez-Sotomayor SM, Nishibe S, Todderud G, Mumby M, Wahl M . Growth factor phosphorylation of PLC-gamma 1. Ciba Found Symp 1992; 164: 223–233.

    CAS  Google Scholar 

  42. Cullen PJ, Lockyer PJ . Integration of calcium and Ras signaling. Nat Rev Mol Cell Biol 2002; 3: 339–348.

    Article  CAS  Google Scholar 

  43. Springett GM, Kawasaki H, Spriggs DR . Non-kinase second-messenger signaling: new pathways with new promise. Bioessays 2004; 26: 730–738.

    Article  CAS  Google Scholar 

  44. Takeshita S, Faccio R, Chappel J, Zheng L, Feng X, Weber JD et al. c-Fms tyrosine 559 is a major mediator of M-CSF-induced proliferation of primary macrophages. J Biol Chem 2007; 282: 18980–18990.

    Article  CAS  Google Scholar 

  45. Murphy LO, Smith S, Chen RH, Fingar DC, Blenis J . Molecular interpretation of ERK signal duration by immediate early gene products. Nat Cell Biol 2002; 4: 556–564.

    Article  CAS  Google Scholar 

  46. Fowles LF, Martin ML, Nelsen L, Stacey KJ, Redd D, Clark YM et al. Persistent activation of mitogen-activated protein kinases p42 and p44 and ets-2 phosphorylation in response to colony-stimulating factor 1/c-fms signaling. Mol Cell Biol 1998; 18: 5148–5156.

    Article  CAS  Google Scholar 

  47. Klappacher GW, Lunyak VV, Sykes DB, Sawka-Verhelle D, Sage J, Brard G et al. An induced Ets repressor complex regulates growth arrest during terminal macrophage differentiation. Cell 2002; 109: 169–180.

    Article  CAS  Google Scholar 

  48. Krishnaraju K, Hoffman B, Liebermann DA . Early growth response gene 1 stimulates development of hematopoietic progenitor cells along the macrophage lineage at the expense of the granulocyte and erythroid lineages. Blood 2001; 97: 1298–1305.

    Article  CAS  Google Scholar 

  49. Tanaka T, Kurokawa M, Ueki K, Tanaka K, Imai Y, Mitani K et al. The extracellular signal-regulated kinase pathway phosphorylates AML1, an acute myeloid leukemia gene product, and potentially regulates its transactivation ability. Mol Cell Biol 1996; 16: 3967–3979.

    Article  CAS  Google Scholar 

  50. Ross SE, Radomska HS, Wu B, Zhang P, Winnay JN, Bajnok L et al. Phosphorylation of C/EBPalpha inhibits granulopoiesis. Mol Cell Biol 2004; 24: 675–686.

    Article  CAS  Google Scholar 

  51. Marcinkowska E, Garay E, Gocek E, Chrobak A, Wang X, Studzinski GP . Regulation of C/EBPbeta isoforms by MAPK pathways in HL60 cells induced to differentiate by 1,25-dihydroxyvitamin D3. Exp Cell Res 2006; 312: 2054–2065.

    Article  CAS  Google Scholar 

  52. Frohling S, Scholl C, Gilliland DG, Levine RL . Genetics of myeloid malignancies: pathogenetic and clinical implications. J Clin Oncol 2005; 23: 6285–6295.

    Article  CAS  Google Scholar 

  53. Radomska HS, Basseres DS, Zheng R, Zhang P, Dayaram T, Yamamoto Y et al. Block of C/EBP alpha function by phosphorylation in acute myeloid leukemia with FLT3 activating mutations. J Exp Med 2006; 203: 371–381.

    Article  CAS  Google Scholar 

  54. Glasow A, Prodromou N, Xu K, von Lindern M, Zelent A . Retinoids and myelomonocytic growth factors cooperatively activate RARA and induce human myeloid leukemia cell differentiation via MAP kinase pathways. Blood 2005; 105: 341–349.

    Article  CAS  Google Scholar 

  55. Studzinski GP, Wang X, Ji Y, Wang Q, Zhang Y, Kutner A et al. The rationale for deltanoids in therapy for myeloid leukemia: role of KSR-MAPK-C/EBP pathway. J Steroid Biochem Mol Biol 2005; 97: 47–55.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Ligue Nationale Contre le Cancer (Equipe labellisée 2000 and 2004), Association pour la Recherche contre le Cancer (grant no 4000) and the Centre National de la Recherche Scientifique. CB-H and JT were supported by fellowships from French Ministére de la Recherche.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Mouchiroud.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bourgin-Hierle, C., Gobert-Gosse, S., Thérier, J. et al. Src-family kinases play an essential role in differentiation signaling downstream of macrophage colony-stimulating factor receptors mediating persistent phosphorylation of phospholipase C-γ2 and MAP kinases ERK1 and ERK2. Leukemia 22, 161–169 (2008). https://doi.org/10.1038/sj.leu.2404986

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404986

Keywords

Search

Quick links