Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Higher doses of CD34+ peripheral blood stem cells are associated with increased mortality from chronic graft-versus-host disease after allogeneic HLA-identical sibling transplantation

Abstract

Allogeneic peripheral blood stem cell transplantation (PBSCT) has emerged as an alternative to bone marrow transplantation. PBSCT can be associated with a higher incidence of chronic graft-versus-host disease (cGVHD). In this study, we investigated whether there was a correlation between the composition of PBSC grafts (CD34+ and CD3+ cells) and hematological recovery, GVHD, relapse, and relapse-free survival (RFS) after myeloablative HLA-identical sibling PBSCT. The evolution of 100 acute or chronic leukemia patients was analyzed. Neither hematological recovery, acute or cGVHD, nor relapse, was significantly associated with CD3+ cell dose. Increasing CD34+ stem cells was associated with faster neutrophil (P=0.03) and platelet (P=0.007) recovery. Moreover, 47 of the 78 patients evaluable for cGVHD (60%; 95% CI, 49–71%) developed extensive cGVHD. The probability of extensive cGVHD at 4 years was 34% (95% CI, 21–47%) in patients receiving a ‘low’ CD34+ cell dose (<8.3 × 106/kg), as compared to 62% (95% CI, 48–76%) in patients receiving a ‘high’ CD34+ cell dose (>8.3 × 106/kg) (P=0.01). At a median follow-up of 59 months, this has not translated into a difference in relapse. In patients evaluable for cGVHD, RFS was significantly higher in patients receiving a ‘low’ CD34+ cell dose as compared to those receiving a ‘high’ CD34+ cell dose (P=0.04). This difference was mainly because of a significantly higher cGVHD-associated mortality (P=0.01). Efforts to accelerate engraftment by increasing CD34+ cell dose must be counterbalanced with the risk of detrimental cGVHD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Korbling M, Przepiorka D, Huh YO, Engel H, van Besien K, Giralt S et al. Allogeneic blood stem cell transplantation for refractory leukemia and lymphoma: potential advantage of blood over marrow allografts. Blood 1995; 85: 1659–1665.

    CAS  PubMed  Google Scholar 

  2. Bensinger WI, Weaver CH, Appelbaum FR, Rowley S, Demirer T, Sanders J et al. Transplantation of allogeneic peripheral blood stem cells mobilized by recombinant human granulocyte colony-stimulating factor. Blood 1995; 85: 1655–1658.

    CAS  PubMed  Google Scholar 

  3. Schmitz N, Dreger P, Suttorp M, Rohwedder EB, Haferlach T, Loffler H et al. Primary transplantation of allogeneic peripheral blood progenitor cells mobilized by filgrastim (granulocyte colony-stimulating factor). Blood 1995; 85: 1666–1672.

    CAS  PubMed  Google Scholar 

  4. Bensinger WI, Clift R, Martin P, Appelbaum FR, Demirer T, Gooley T et al. Allogeneic peripheral blood stem cell transplantation in patients with advanced hematologic malignancies: a retrospective comparison with marrow transplantation. Blood 1996; 88: 2794–2800.

    CAS  PubMed  Google Scholar 

  5. Russell JA, Brown C, Bowen T, Luider J, Ruether JD, Stewart D et al. Allogeneic blood cell transplants for haematological malignancy: preliminary comparison of outcomes with bone marrow transplantation. Bone Marrow Transplant 1996; 17: 703–708.

    CAS  PubMed  Google Scholar 

  6. Przepiorka D, Anderlini P, Ippoliti C, Khouri I, Fietz T, Thall P et al. Allogeneic blood stem cell transplantation in advanced hematologic cancers. Bone Marrow Transplant 1997; 19: 455–460.

    Article  CAS  PubMed  Google Scholar 

  7. Miflin G, Russell NH, Hutchinson RM, Morgan G, Potter M, Pagliuca A et al. Allogeneic peripheral blood stem cell transplantation for haematological malignancies – an analysis of kinetics of engraftment and GVHD risk. Bone Marrow Transplant 1997; 19: 9–13.

    Article  CAS  PubMed  Google Scholar 

  8. Schmitz N, Bacigalupo A, Hasenclever D, Nagler A, Gluckman E, Clark P et al. Allogeneic bone marrow transplantation vs filgrastim-mobilised peripheral blood progenitor cell transplantation in patients with early leukaemia: first results of a randomised multicentre trial of the European Group for Blood and Marrow Transplantation. Bone Marrow Transplant 1998; 21: 995–1003.

    Article  CAS  PubMed  Google Scholar 

  9. Vigorito AC, Azevedo WM, Marques JF, Azevedo AM, Eid KA, Aranha FJ et al. A randomised, prospective comparison of allogeneic bone marrow and peripheral blood progenitor cell transplantation in the treatment of haematological malignancies. Bone Marrow Transplant 1998; 22: 1145–1151.

    Article  CAS  PubMed  Google Scholar 

  10. Powles R, Mehta J, Kulkarni S, Treleaven J, Millar B, Marsden J et al. Allogeneic blood and bone-marrow stem-cell transplantation in haematological malignant diseases: a randomised trial. Lancet 2000; 355: 1231–1237.

    Article  CAS  PubMed  Google Scholar 

  11. Blaise D, Kuentz M, Fortanier C, Bourhis JH, Milpied N, Sutton L et al. Randomized trial of bone marrow versus lenograstim-primed blood cell allogeneic transplantation in patients with early stage leukemia: a report from the Societe Francaise de Greffe de Moelle. J Clin Oncol 2000; 18: 537–546.

    Article  CAS  PubMed  Google Scholar 

  12. Bensinger WI, Martin PJ, Storer B, Clift R, Forman SJ, Negrin R et al. Transplantation of bone marrow as compared with peripheral-blood cells from HLA-identical relatives in patients with hematologic cancers. N Engl J Med 2001; 344: 175–181.

    Article  CAS  PubMed  Google Scholar 

  13. Heldal D, Tjonnfjord G, Brinch L, Albrechtsen D, Egeland T, Steen R et al. A randomised study of allogeneic transplantation with stem cells from blood or bone marrow. Bone Marrow Transplant 2000; 25: 1129–1136.

    Article  CAS  PubMed  Google Scholar 

  14. Champlin RE, Schmitz N, Horowitz MM, Chapuis B, Chopra R, Cornelissen JJ et al. Blood stem cells compared with bone marrow as a source of hematopoietic cells for allogeneic transplantation. IBMTR Histocompatibility and Stem Cell Sources Working Committee and the European Group for Blood and Marrow Transplantation (EBMT). Blood 2000; 95: 3702–3709.

    CAS  PubMed  Google Scholar 

  15. Korbling M, Anderlini P . Peripheral blood stem cell versus bone marrow allotransplantation: does the source of hematopoietic stem cells matter? Blood 2001; 98: 2900–2908.

    Article  CAS  PubMed  Google Scholar 

  16. Mohty M, Kuentz M, Michallet M, Bourhis JH, Milpied N, Sutton L et al. Chronic graft-versus-host disease after allogeneic blood stem cell transplantation: long term results of a randomized study. Blood 2002; 100: 3128–3134.

    Article  CAS  PubMed  Google Scholar 

  17. Bacigalupo A, Francesco F, Brinch L, Van Lint MT . Bone marrow or peripheral blood as a source of stem cells for allogeneic transplants. Curr Opin Hematol 2000; 7: 343–347.

    Article  CAS  PubMed  Google Scholar 

  18. Ryncarz RE, Anasetti C . Expression of CD86 on human marrow CD34(+) cells identifies immunocompetent committed precursors of macrophages and dendritic cells. Blood 1998; 91: 3892–3900.

    CAS  PubMed  Google Scholar 

  19. Rondelli D, Anasetti C, Fortuna A, Ratta M, Arpinati M, Bandini G et al. T cell alloreactivity induced by normal G-CSF-mobilized CD34+ blood cells. Bone Marrow Transplant 1998; 21: 1183–1191.

    Article  CAS  PubMed  Google Scholar 

  20. Rondelli D, Lemoli RM, Ratta M, Fogli M, Re F, Curti A et al. Rapid induction of CD40 on a subset of granulocyte colony-stimulating factor-mobilized CD34(+) blood cells identifies myeloid committed progenitors and permits selection of nonimmunogenic CD40(-) progenitor cells. Blood 1999; 94: 2293–2300.

    CAS  PubMed  Google Scholar 

  21. van Rhee F, Jiang YZ, Vigue F, Kirby M, Mavroudis D, Hensel NF et al. Human G-CSF-mobilized CD34-positive peripheral blood progenitor cells can stimulate allogeneic T-cell responses: implications for graft rejection in mismatched transplantation. Br J Haematol 1999; 105: 1014–1024.

    Article  CAS  PubMed  Google Scholar 

  22. Urbano-Ispizua A, Carreras E, Marin P, Rovira M, Martinez C, Fernandez-Aviles F et al. Allogeneic transplantation of CD34(+) selected cells from peripheral blood from human leukocyte antigen-identical siblings: detrimental effect of a high number of donor CD34(+) cells? Blood 2001; 98: 2352–2357.

    Article  CAS  PubMed  Google Scholar 

  23. Blaise D, Jourdan E, Michallet M, Jouet JP, Boiron JM, Michel G et al. Mobilisation of healthy donors with lenograstim and transplantation of HLA-genoidentical blood progenitors in 54 patients with hematological malignancies: a pilot study. Bone Marrow Transplant 1998; 22: 1153–1158.

    Article  CAS  PubMed  Google Scholar 

  24. Thomas E, Storb R, Clift RA, Fefer A, Johnson FL, Neiman PE et al. Bone-marrow transplantation (first of two parts). N Engl J Med 1975; 292: 832–843.

    Article  CAS  PubMed  Google Scholar 

  25. Santos GW, Tutschka PJ, Brookmeyer R, Saral R, Beschorner WE, Bias WB et al. Marrow transplantation for acute nonlymphocytic leukemia after treatment with busulfan and cyclophosphamide. N Engl J Med 1983; 309: 1347–1353.

    Article  CAS  PubMed  Google Scholar 

  26. Blume KG, Forman SJ, O'Donnell MR, Doroshow JH, Krance RA, Nademanee AP et al. Total body irradiation and high-dose etoposide: a new preparatory regimen for bone marrow transplantation in patients with advanced hematologic malignancies. Blood 1987; 69: 1015–1020.

    CAS  PubMed  Google Scholar 

  27. Cahn JY, Bordigoni P, Souillet G, Pico JL, Plouvier E, Reiffers J et al. The TAM regimen prior to allogeneic and autologous bone marrow transplantation for high-risk acute lymphoblastic leukemias: a cooperative study of 62 patients. Bone Marrow Transplant 1991; 7: 1–4.

    CAS  PubMed  Google Scholar 

  28. Storb R, Deeg HJ, Whitehead J, Appelbaum F, Beatty P, Bensinger W et al. Methotrexate and cyclosporine compared with cyclosporine alone for prophylaxis of acute graft versus host disease after marrow transplantation for leukemia. N Engl J Med 1986; 314: 729–735.

    Article  CAS  PubMed  Google Scholar 

  29. Przepiorka D, Weisdorf D, Martin P, Klingemann HG, Beatty P, Hows J et al. 1994 consensus conference on acute GVHD grading. Bone Marrow Transplant 1995; 15: 825–828.

    CAS  PubMed  Google Scholar 

  30. Shulman HM, Sullivan KM, Weiden PL, McDonald GB, Striker GE, Sale GE et al. Chronic graft-versus-host syndrome in man. A long-term clinicopathologic study of 20 Seattle patients. Am J Med 1980; 69: 204–217.

    Article  CAS  PubMed  Google Scholar 

  31. Farmer ER . The histopathology of graft-versus-host disease. Adv Dermatol 1986; 1: 173–188.

    CAS  PubMed  Google Scholar 

  32. Sullivan KM, Agura E, Anasetti C, Appelbaum F, Badger C, Bearman S et al. Chronic graft-versus-host disease and other late complications of bone marrow transplantation. Semin Hematol 1991; 28: 250–259.

    CAS  PubMed  Google Scholar 

  33. Miettinen O . Estimability and estimation in case-referent studies. Am J Epidemiol 1976; 103: 226–235.

    Article  CAS  PubMed  Google Scholar 

  34. Gooley TA, Leisenring W, Crowley J, Storer BE . Estimation of failure probabilities in the presence of competing risks: new representations of old estimators. Stat Med 1999; 18: 695–706.

    Article  CAS  PubMed  Google Scholar 

  35. Przepiorka D, Anderlini P, Saliba R, Cleary K, Mehra R, Khouri I et al. Chronic graft-versus-host disease after allogeneic blood stem cell transplantation. Blood 2001; 98: 1695–1700.

    Article  CAS  PubMed  Google Scholar 

  36. Kaplan EL, Meier P . Nonparametric estimation from incomplete observations. J Am Stat Assoc 1958; 53: 457–481.

    Article  Google Scholar 

  37. Rothman KJ . Estimation of confidence limits for the cumulative probability of survival in life table analysis. J Chronic Dis 1978; 31: 557–560.

    Article  CAS  PubMed  Google Scholar 

  38. Mantel N, Haenzel W . Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 1959; 22: 719–748.

    CAS  PubMed  Google Scholar 

  39. Anderson JR, Cain KC, Gelber RD . Analysis of survival by tumor response. J Clin Oncol 1983; 1: 710–719.

    Article  CAS  PubMed  Google Scholar 

  40. Cox DR . Regression models and life-tables (with discussions), Series B. J R Statist Soc 1972; 34: 187–220.

    Google Scholar 

  41. Faucher C, le Corroller AG, Blaise D, Novakovitch G, Manonni P, Moatti JP et al. Comparison of G-CSF-primed peripheral blood progenitor cells and bone marrow auto transplantation: clinical assessment and cost-effectiveness. Bone Marrow Transplant 1994; 14: 895–901.

    CAS  PubMed  Google Scholar 

  42. Hartmann O, Le Corroller AG, Blaise D, Michon J, Philip I, Norol F et al. Peripheral blood stem cell and bone marrow transplantation for solid tumors and lymphomas: hematologic recovery and costs. A randomized, controlled trial. Ann Intern Med 1997; 126: 600–607.

    Article  CAS  PubMed  Google Scholar 

  43. Faucher C, Le Corroller AG, Chabannon C, Viens P, Stoppa AM, Bouabdallah R et al. Autologous transplantation of blood stem cells mobilized with filgrastim alone in 93 patients with malignancies: the number of CD34+ cells reinfused is the only factor predicting both granulocyte and platelet recovery. J Hematother 1996; 5: 663–670.

    Article  CAS  PubMed  Google Scholar 

  44. Russel N, Gratwohl A, Schmitz N . The place of blood stem cells in allogeneic transplantation. Br J Haematol 1996; 93: 747–753.

    Article  CAS  PubMed  Google Scholar 

  45. Zaucha JM, Gooley T, Bensinger WI, Heimfeld S, Chauncey TR, Zaucha R et al. CD34 cell dose in granulocyte colony-stimulating factor-mobilized peripheral blood mononuclear cell grafts affects engraftment kinetics and development of extensive chronic graft-versus-host disease after human leukocyte antigen-identical sibling transplantation. Blood 2001; 98: 3221–3227.

    Article  CAS  PubMed  Google Scholar 

  46. Gianni AM, Bregni M, Siena S, Villa S, Sciorelli GA, Ravagnani F et al. Rapid and complete hemopoietic reconstitution following combined transplantation of autologous blood and bone marrow cells. A changing role for high dose chemo-radiotherapy? Hematol Oncol 1989; 7: 139–148.

    Article  CAS  PubMed  Google Scholar 

  47. Martin PJ . The role of donor lymphoid cells in allogeneic marrow engraftment. Bone Marrow Transplant 1990; 6: 283–289.

    CAS  PubMed  Google Scholar 

  48. Schmitz N, Beksaç M, Hasenclever D, Bacigalupo A, Ruutu T, Nagler A et al. Transplantation of mobilized peripheral blood cells to HLA-identical siblings with standard risk leukemia. Blood 2002; 100: 761–767.

    Article  CAS  PubMed  Google Scholar 

  49. Leung W, Ramirez M, Mukherjee G, Perlman EJ, Civin CI . Comparisons of alloreactive potential of clinical hematopoietic grafts. Transplantation 1999; 68: 628–635.

    Article  CAS  PubMed  Google Scholar 

  50. Reyes E, Garcia-Castro I, Esquivel F, Hornedo J, Cortes-Funes H, Solovera J et al. Granulocyte colony-stimulating factor (G-CSF) transiently suppresses mitogen-stimulated T-cell proliferative response. Br J Cancer 1999; 80: 229–235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Volpi I, Perruccio K, Tosti A, Capanni M, Ruggeri L, Posati S et al. Postgrafting administration of granulocyte colony-stimulating factor impairs functional immune recovery in recipients of human leukocyte antigen haplotype-mismatched hematopoietic transplants. Blood 2001; 97: 2514–2521.

    Article  CAS  PubMed  Google Scholar 

  52. Mielcarek M, Roecklein BA, Torok-Storb B . CD14+ cells in granulocyte colony-stimulating factor (G-CSF)-mobilized peripheral blood mononuclear cells induce secretion of interleukin-6 and G-CSF by marrow stroma. Blood 1996; 87: 574–580.

    CAS  PubMed  Google Scholar 

  53. Arpinati M, Green CL, Heimfeld S, Heuser JE, Anasetti C . Granulocyte-colony stimulating factor mobilizes T helper 2-inducing dendritic cells. Blood 2000; 95: 2484–2490.

    CAS  PubMed  Google Scholar 

  54. Pan L, Delmonte Jr J, Jalonen CK, Ferrara JL . Pretreatment of donor mice with granulocyte colony-stimulating factor polarizes donor T lymphocytes toward type-2 cytokine production and reduces severity of experimental graft-versus-host disease. Blood 1995; 86: 4422–4429.

    CAS  PubMed  Google Scholar 

  55. Talmadge JE, Reed EC, Kessinger A, Kuszynski CA, Perry GA, Gordy CL et al. Immunologic attributes of cytokine mobilized peripheral blood stem cells and recovery following transplantation. Bone Marrow Transplant 1996; 17: 101–109.

    CAS  PubMed  Google Scholar 

  56. Przepiorka D, Smith TL, Folloder J, Khouri I, Ueno NT, Mehra R et al. Risk factors for acute graft-versus-host disease after allogeneic blood stem cell transplantation. Blood 1999; 94: 1465–1470.

    CAS  PubMed  Google Scholar 

  57. Nash RA, Pepe MS, Storb R, Longton G, Pettinger M, Anasetti C et al. Acute graft-versus-host disease: analysis of risk factors after allogeneic marrow transplantation and prophylaxis with cyclosporine and methotrexate. Blood 1992; 80: 1838–1845.

    CAS  PubMed  Google Scholar 

  58. Deeg HJ . Prophylaxis and treatment of acute graft-versus-host disease: current state, implications of new immunopharmacologic compounds and future strategies to prevent and treat acute GVHD in high-risk patients. Bone Marrow Transplant 1994; 14: S56–S60.

    PubMed  Google Scholar 

  59. Flowers ME, Parker PM, Johnston LJ, Matos AVB, Storer B, Bensinger WI et al. Comparison of chronic graft-versus-host disease after transplantation of peripheral blood stem cells versus bone marrow in allogeneic recipients: long-term follow-up of a randomized trial. Blood 2002; 100: 415–419.

    Article  CAS  PubMed  Google Scholar 

  60. Lee SJ, Klein JP, Barrett AJ, Ringden O, Antin JH, Cahn JY et al. Severity of chronic graft-versus-host disease: association with treatment-related mortality and relapse. Blood 2002; 100: 406–414.

    Article  CAS  PubMed  Google Scholar 

  61. Weiden PL, Sullivan KM, Flournoy N, Storb R, Thomas ED . Antileukemic effect of chronic graft-versus-host disease: contribution to improved survival after allogeneic marrow transplantation. N Engl J Med 1981; 304: 1529–1533.

    Article  CAS  PubMed  Google Scholar 

  62. Horowitz MM, Gale RP, Sondel PM, Goldman JM, Kersey J, Kolb HJ et al. Graft-versus-leukemia reactions after bone marrow transplantation. Blood 1990; 75: 555–562.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a grant from the French Ministry of Health (PHRC 1996) and a grant from the Ligue Nationale de Lutte Contre le Cancer. In addition, Laboratoires Chugai Pharma France (Paris la Défense) provided some support for this study, but did not participate in either the definition or data analysis. Mohamad Mohty was supported by grants from the SFGM-TC, the ‘Fondation de France’ and the ‘Fondation pour la Recherche Médicale’ (Paris, France). We thank D Buckner for critical reading of the manuscript. We thank the clinical research technicians from each participating center for help in data collection. We thank AG Le Coroller (INSERM U379, Marseille) for help with statistical analysis. We also thank the following members of the SFGM-TC for their active participation: JJ Sotto (Grenoble), M Legros (deceased, Clermont-Ferrand), and V Lapierre (Villejuif).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohty, M., Bilger, K., Jourdan, E. et al. Higher doses of CD34+ peripheral blood stem cells are associated with increased mortality from chronic graft-versus-host disease after allogeneic HLA-identical sibling transplantation. Leukemia 17, 869–875 (2003). https://doi.org/10.1038/sj.leu.2402909

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402909

Keywords

This article is cited by

Search

Quick links