Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Increased IκB kinase activity is associated with activated NF-κB in acute myeloid blasts

Abstract

NF-κB/Rel transcription factors are modulators of immune and inflammatory processes and are also involved in malignancy. Phosphorylation of the IκB inhibitors by the IκB kinase (IKK) complex leads to their proteasomal degradation, resulting in activated NF-κB. Here, we investigated the activation status of NF-κB and the IKK complex in acute myeloid leukemia (AML). Gelshift assays revealed an increased level of activated nuclear NF-κB in myeloid blasts. Both bone marrow and peripheral blood blasts from AML patients showed enhanced IKK activity relative to controls, whereas the IKK protein concentrations were comparable. In addition, an increased level of IκB-α was detected in AML blast cells, although this appeared to be insufficient to block nuclear translocation of NF-κB, also confirmed by immunofluorescence. In subtype M4 and M5 AML cells a more extensive NF-κB activation and higher IKK activity was found than in M1/M2 specimens. Isolated AML blasts cultured ex vivoresponded to external stimulation (TNF, LPS) by further IKK activation, IκB degradation and NF-κB activation. Preincubation with the proteasome inhibitor PSI inhibited the NF-κB system in isolated AML blasts. This study established for the first time a dysregulation of IKK signaling in AML leading to increased NF-κB activity suggesting potential therapeutic avenues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 5
Figure 2
Figure 3
Figure 4
Figure 6

Similar content being viewed by others

References

  1. Baeuerle PA, Baltimore D . NF-κB: ten years after Cell 1996 87: 13–20

    Article  CAS  PubMed  Google Scholar 

  2. Thanos D, Maniatis T . NF-κB: a lesson in family values Cell 1995 80: 529–532

    Article  CAS  PubMed  Google Scholar 

  3. Brand K, Page S, Walli AK, Neumeier D, Baeuerle PA . Role of nuclear factor-κB in atherogenesis Exp Physiol 1997 82: 297–304

    Article  CAS  PubMed  Google Scholar 

  4. Mayo MW, Baldwin AS . The transcription factor NF-κB: control of oncogenesis and cancer therapy resistance Biochim Biophys Acta 2000 1470: M55–M62

    CAS  PubMed  Google Scholar 

  5. Bargou RC, Leng C, Krappmann D, Emmerich F, Mapara MY, Bommert K, Royer HD, Scheidereit C, Dörken B . High-level nuclear NF-κB and Oct-2 is a common feature of cultured Hodgkin/Reed-Sternberg cells Blood 1996 87: 4340–4347

    CAS  PubMed  Google Scholar 

  6. Kordes U, Krappmann D, Heissmeyer V, Ludwig WD, Scheidereit C . Transcription factor NF-κB is constitutively activated in acute lymphoblastic leukemia cells Leukemia 2000 14: 399–402

    Article  CAS  PubMed  Google Scholar 

  7. Whiteside ST, Israel A . I kappa B proteins: structure, function and regulation Semin Cancer Biol 1997 8: 75–82

    Article  CAS  PubMed  Google Scholar 

  8. May MJ, Ghosh S . Rel/NF-kappaB and I kappa B proteins: an overview Semin Cancer Biol 1997 8: 63–73

    Article  CAS  PubMed  Google Scholar 

  9. Wulczyn FG, Krappmann D, Scheidereit C . The NF-κB/Rel and IκB gene families: mediators of immune response and inflammation J Mol Med 1996 74: 749–769

    Article  CAS  PubMed  Google Scholar 

  10. Rayet B, Gelinas C . Aberrant rel/nfkb genes and activity in human cancer Oncogene 1999 18: 6938–6947

    Article  CAS  PubMed  Google Scholar 

  11. Brand K, Eisele T, Kreusel U, Page M, Page S, Haas M, Gerling A, Kaltschmidt C, Neumann FJ, Mackman N, Baeuerle PA, Walli AK, Neumeier D . Dysregulation of monocytic nuclear factor-κB by oxidized low-density lipoprotein Arterioscler Thromb Vasc Biol 1997 17: 1901–1909

    Article  CAS  PubMed  Google Scholar 

  12. Page S, Fischer C, Baumgartner B, Haas M, Kreusel U, Loidl G, Hayn M, Ziegler-Heitbrock HWL, Neumeier D, Brand K . 4-Hydroxynonenal prevents NF-κB activation and TNF expression by inhibiting IκB phosphorylation and subsequent proteolysis J Biol Chem 1999 274: 11611–11618

    Article  CAS  PubMed  Google Scholar 

  13. Mackman N, Brand K, Edgington TS . Lipopolysaccharide-mediated transcriptional activation of human tissue factor gene in THP-1 monocytic cells requires both activator protein 1 and nuclear factor κB binding sites J Exp Med 1991 174: 1517–1526

    Article  CAS  PubMed  Google Scholar 

  14. Karin M, Ben-Neriah Y . Phosphorylation meets ubiquitination: the control of NF-κB activity Annu Rev Immunol 2000 18: 621–663

    Article  CAS  PubMed  Google Scholar 

  15. Israel A . The IKK complex: an integrator of all signals that activate NF-kappaB? Trends Cell Biol 2000 10: 129–133

    Article  CAS  PubMed  Google Scholar 

  16. Woronicz JD, Gao X, Cao Z, Rothe M, Goeddel DV . IkappaB kinase-beta: NF-kappaB activation and complex formation with IkappaB kinase-alpha and NIK Science 1997 278: 866–869

    Article  CAS  PubMed  Google Scholar 

  17. Fischer C, Page S, Weber M, Eisele T, Neumeier D, Brand K . Different effects of LPS and TNF on monocytic IKK signalsome activation and IκB proteolysis J Biol Chem 1999 274: 24625–24632

    Article  CAS  PubMed  Google Scholar 

  18. Krappmann D, Emmerich F, Kordes U, Scharschmidt E, Dörken B, Scheidereit C . Molecular mechanisms of constitutive NF-κB/Rel activation in Hodgkin/Reed–Sternberg cells Oncogene 1999 18: 943–953

    Article  CAS  PubMed  Google Scholar 

  19. Sun SC, Ballard DW . Persistent activation of NF-kappaB by the tax transforming protein of HTLV-1: hijacking cellular IkappaB kinases Oncogene 1999 18: 6948–6958

    Article  CAS  PubMed  Google Scholar 

  20. Dokter WHA, Tuyt L, Sierdsema SJ, Esselink MT, Vellenga E . The spontaneous expression of interleukin-1β and interleukin-6 is associated with spontaneous expression of AP-1 and NF-κB transcription factor in acute myeloblastic leukemia cells Leukemia 1995 9: 425–432

    CAS  PubMed  Google Scholar 

  21. Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR, Sultan C . Proposed revised criteria for the classification of acute myeloid leukemia. A report of the French–American–British Cooperative Group Ann Intern Med 1985 103: 620–625

    Article  CAS  PubMed  Google Scholar 

  22. McKenna RW . Multifaceted approach to the diagnosis and classification of acute leukemias Clin Chem 2000 46: 1252–1259

    CAS  PubMed  Google Scholar 

  23. Brand K, Page S, Rogler G, Bartsch A, Brandl R, Knuechel R, Page M, Kaltschmidt C, Baeuerle PA, Neumeier D . Activated transcription factor nuclear factor-kappa B is present in the atherosclerotic lesion J Clin Invest 1996 97: 1715–1722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Brand K, Mackman N, Curtiss LK . Interferon-γ inhibits macrophage apolipoprotein E production by posttranslational mechanisms J Clin Invest 1993 91: 2031–2039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. O'Byrne KJ, Dalgleish AG, Browning MJ, Steward WP, Harris AL . The relationship between angiogenesis and the immune response in carcinogenesis and the progression of malignant disease Eur J Cancer 2000 36: 151–169

    Article  CAS  PubMed  Google Scholar 

  26. Barkett M, Gilmore TD . Control of apoptosis by Rel/NF-κB transcription factors Oncogene 1999 18: 6910–6924

    Article  CAS  PubMed  Google Scholar 

  27. Wuchter C, Krappmann D, Cai Z, Ruppert V, Scheidereit C, Dörken B, Ludwig W-D, Karawajew L . In vitro susceptibility to TRAIL-induced apoptosis of acute leukemia cells in the context of TRAIL receptor gene expression and constitutive NF-κB activity Leukemia 2001 15: 921–928

    Article  CAS  PubMed  Google Scholar 

  28. Guzman ML, Neering SJ, Upchurch D, Grimes B, Howard DS, Rizzieri DA, Luger SM, Jordan CT . Nuclear factor-κB is constitutively activated in primitive human acute myelogenous leukemia cells Blood 2001 98: 2301–2307

    Article  CAS  PubMed  Google Scholar 

  29. Mori N, Fujii M, Ikeda S, Yamada Y, Tomonaga M, Ballard DW, Yamamoto N . Constitutive activation of NF-kappa B in primary adult T-cell leukemia cells Blood 1999 93: 2360–2368

    CAS  PubMed  Google Scholar 

  30. Seeger C, Mason WS . Hepatitis B virus biology Microbiol Mol Biol Rev 2000 64: 51–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Asaka M, Takeda H, Sugiyama T, Kato M . What role does Helicobacter pylori play in gastric cancer? Gastroenterology 1997 113: 56–60

    Article  Google Scholar 

  32. Wood KM, Roff M, Hay RT . Defective IκBα in Hodgkin cell lines with constitutively active NF-κB Oncogene 1998 16: 2131–2139

    Article  CAS  PubMed  Google Scholar 

  33. Geleziunas R, Ferrell S, Lin X, Mu Y, Cunningham ET, Grant M, Connelly MA, Hambor JE, Marcu KB, Greene WC . Human T-cell leukemia virus type 1 Tax induction of NF-κB involves activation of the IκB kinase α (IKKα) and IKKβ cellular kinases Mol Cell Biol 1998 18: 5157–5165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Devalaraja MN, Wang DZ, Ballard DW, Richmond A . Elevated constitutive IκB kinase activity and IκB-α phosphorylation in Hs294T melanoma cells lead to increased basal MGSA/GRO-α transcription Cancer Res 1999 59: 1372–1377

    CAS  PubMed  Google Scholar 

  35. Arsura M, Mercurio F, Oliver AL, Thorgeirsson SS, Sonenshein GE . Role of the IκB kinase complex in oncogenic Ras- and Raf-mediated transformation of rat liver epithelial cells Mol Cell Biol 2000 20: 5381–5391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Greer JP, Baer MR, Kinney MC . Acute myelogenous leukemia In: Lee G, Foerster J, Lukens J, Paraskevas F, Rodgers G (eds) Wintrobe's Clinical Hematology, 10th edn Lippincott Williams & Wilkins: Philadelphia 1998 pp 2272–2319

    Google Scholar 

  37. Tsuchiya S, Yamabe M, Yamaguchi Y, Kobayashi Y, Konno T, Tada K . Establishment and characterization of a human acute monocytic leukemia cell line (THP-1) Int J Cancer 1980 26: 171–176

    Article  CAS  PubMed  Google Scholar 

  38. Bargou RC, Emmerich F, Krappmann D, Bommert K, Mapara MY, Arnold W, Royer RD, Grinstein E, Greiner A, Scheidereit C, Dörken B . Constitutive nuclear factor-κB-RelA activation is required for proliferation and survival of Hodgkin‘s disease tumor cells J Clin Invest 1997 100: 2961–2969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cogswell PC, Guttridge DC, Funkhouser WK, Baldwin AS Jr . Selective activation of NF-κB subunits in human breast cancer: potential roles for NF-κB2/p52 and for Bcl-3 Oncogene 2000 19: 1123–1131

    Article  CAS  PubMed  Google Scholar 

  40. Emmerich F, Meiser M, Hummel M, Demel G, Foss HD, Jundt F, Mathas S, Krappmann D, Scheidereit C, Stein H, Dörken B . Overexpression of I kappa B alpha without inhibition of NF-kappaB activity and mutations in the I kappa B alpha gene in Reed–Sternberg cells Blood 1999 94: 3129–3134

    CAS  PubMed  Google Scholar 

  41. Baichwal VR, Baeuerle PA . Apoptosis: Activate NF-κB or die? Curr Biol 1997 7: R94–R96

    Article  CAS  PubMed  Google Scholar 

  42. Jeremias I, Kupatt C, Baumann B, Herr I, Wirth T, Debatin KM . Inhibition of nuclear factor κB activation attenuates apoptosis resistance in lymphoid cells Blood 1998 91: 4624–4631

    CAS  PubMed  Google Scholar 

  43. Romano MF, Lamberti A, Bisogni R, Tassone P, Pagnini D, Storti G, Del Vecchio L, Turco MC, Venuta S . Enhancement of cytosine arabinoside-induced apoptosis in human myeloblastic leukemia cells by NF-kappa B/Rel-specific decoy oligodeoxynucleotides Gene Ther 2000 7: 1234–1237

    Article  CAS  PubMed  Google Scholar 

  44. May MJ, D'Acquisto F, Madge LA, Glockner J, Pober JS, Ghosh S . Selective inhibition of NF-κB activation by a peptide that blocks the interaction of NEMO with the IκB kinase complex Science 2000 289: 1550–1554

    Article  CAS  PubMed  Google Scholar 

  45. Estrov Z, Manna SK, Harris D, Van Q, Estey EH, Kantarjian HM, Talpaz M, Aggarwal BB . Phenylarsine oxide blocks interleukin-1β-induced activation of the nuclear transcription factor NF-κB, inhibits proliferation, and induces apoptosis of acute myelogenous leukemia cells Blood 1999 94: 2844–2853

    CAS  PubMed  Google Scholar 

  46. Burnett AK, Eden OB . The treatment of acute leukemia Lancet 1997 349: 270–275

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Special thanks to Tamara Eisele for excellent technical assistance as well as to Margit Obst, Marion Barchfeld and Doris Schmidbauer from the hematological laboratory of the Institute of Clinical Chemistry and Pathobiochemistry for their support during this project. We also thank Michael Henning from the Institute for Medical Statistics and Epidemiology, Klinikum rechts der Isar, Technische Universität München, for help with the statistical analyses. This work was supported by the Deutsche Forschungsgemeinschaft (Br 1026/3-3) and by the Medical Faculty of the Technische Universität München (H 50-98).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Brand.

Additional information

In memory of Maria Brand-Bartsch who died from AML.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baumgartner, B., Weber, M., Quirling, M. et al. Increased IκB kinase activity is associated with activated NF-κB in acute myeloid blasts. Leukemia 16, 2062–2071 (2002). https://doi.org/10.1038/sj.leu.2402641

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402641

Keywords

This article is cited by

Search

Quick links