Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Spotlight
  • Published:

Spotlight on Molecular Targeted Therapy

The proteasome: a novel target for cancer chemotherapy

Abstract

The ubiquitin-proteasome system is an important regulator of cell growth and apoptosis. The potential of specific proteasome inhibitors to act as novel anti-cancer agents is currently under intensive investigation. Several proteasome inhibitors exert anti-tumour activity in vivo and potently induce apoptosis in tumour cells in vitro, including those resistant to conventional chemotherapeutic agents. By inhibiting NF-κB transcriptional activity, proteasome inhibitors may also prevent angiogenesis and metastasis in vivo and further increase the sensitivity of cancer cells to apoptosis. Proteasome inhibitors also exhibit some level of selective cytotoxicity to cancer cells by preferentially inducing apoptosis in proliferating or transformed cells or by overcoming deficiencies in growth-inhibitory or pro-apoptotic molecules. High expression of oncogene products like c-Myc also makes cancer cells more susceptible to proteasome inhibitor-induced apoptosis. The induction of apoptosis by proteasome inhibitors varies between cell types but often occurs following an initial accumulation of short-lived proteins such as p53, p27, pro-apoptotic Bcl-2 family members or activation of the stress kinase JNK. These initial events often result in a perturbation of mitochondria with concomitant release of cytochrome c and activation of the Apaf-1 containing apoptosome complex. This results in activation of the apical caspase-9 followed by activation of effector caspases-3 and -7, which are responsible for the biochemical and morphological changes associated with apoptosis.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

References

  1. Ciechanover A . The ubiquitin-proteasome proteolytic pathway Cell 1994 79: 13–21

    CAS  PubMed  Google Scholar 

  2. Brooks P, Fuertes G, Murray RZ, Bose S, Knecht E, Rechsteiner MC, Hendil KB, Tanaka K, Dyson J, Rivett AJ . Subcellular localization of proteasomes and their regulatory complexes in mammalian cells Biochem J 2000 346: 155–161

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Baumeister W, Cejka Z, Kania M, Seemuller E . The proteasome: a macromolecular assembly designed to confine proteolysis to a nanocompartment Biol Chem 1997 378: 121–130

    CAS  PubMed  Google Scholar 

  4. Lupas A, Flanagan JM, Tamura T, Baumeister W . Self-compartmentalizing proteases Trends Biochem Sci 1997 22: 399–404

    CAS  PubMed  Google Scholar 

  5. Baumeister W, Walz J, Zuhl F, Seemuller E . The proteasome: paradigm of a self-compartmentalizing protease Cell 1998 92: 367–380

    CAS  PubMed  Google Scholar 

  6. Hershko A, Ciechanover A . The ubiquitin system Annu Rev Biochem 1998 67: 425–479

    CAS  PubMed  Google Scholar 

  7. Varshavsky A . The ubiquitin system Trends Biochem Sci 1997 22: 383–387

    CAS  PubMed  Google Scholar 

  8. Murray RZ, Norbury C . Proteasome inhibitors as anti-cancer agents Anticancer Drugs 2000 11: 407–417

    CAS  PubMed  Google Scholar 

  9. Hershko A . Roles of ubiquitin-mediated proteolysis in cell cycle control Curr Opin Cell Biol 1997 9: 788–799

    CAS  PubMed  Google Scholar 

  10. King RW, Deshaies RJ, Peters JM, Kirschner MW . How proteolysis drives the cell cycle Science 1996 274: 1652–1659

    CAS  PubMed  Google Scholar 

  11. Wang X, Luo H, Chen H, Duguid W, Wu J . Role of proteasomes in T cell activation and proliferation J Immunol 1998 160: 788–801

    CAS  PubMed  Google Scholar 

  12. Orlowski RZ . The role of the ubiquitin-proteasome pathway in apoptosis Cell Death Differ 1999 6: 303–313

    CAS  PubMed  Google Scholar 

  13. Spataro V, Norbury C, Harris AL . The ubiquitin-proteasome pathway in cancer Br J Cancer 1998 77: 448–455

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Karin M, Ben-Neriah Y . Phosphorylation meets ubiquitination: the control of NF-κB activity Annu Rev Immunol 2000 18: 621–663

    CAS  PubMed  Google Scholar 

  15. Elliott PJ, Adams J . Recent advances in understanding proteasome function Curr Opin Drug Discovery Devel 1999 2: 484–490

    CAS  Google Scholar 

  16. Bratton SB, MacFarlane M, Cain K, Cohen GM . Protein complexes activate distinct caspase cascades in death receptor and stress-induced apoptosis Exp Cell Res 2000 256: 27–33

    CAS  PubMed  Google Scholar 

  17. Cain K, Bratton SB, Langlais C, Walker G, Brown DG, Sun XM, Cohen GM . Apaf-1 oligomerizes into biologically active 700-kDa and inactive  1.4-MDa apoptosome complexes J Biol Chem 2000 275: 6067–6070

    CAS  PubMed  Google Scholar 

  18. Cohen GM . Caspases: the executioners of apoptosis Biochem J 1997 326: 1–16

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Earnshaw WC, Martins LM, Kaufmann SH . Mammalian caspases: structure, activation, substrates, and functions during apoptosis Annu Rev Biochem 1999 68: 383–424

    CAS  PubMed  Google Scholar 

  20. Nicholson DW . Caspase structure, proteolytic substrates, and function during apoptotic cell death Cell Death Differ 1999 6: 1028–1042

    CAS  PubMed  Google Scholar 

  21. Huang H, Joazeiro CA, Bonfoco E, Kamada S, Leverson JD, Hunter T . The inhibitor of apoptosis, cIAP2, functions as a ubiquitin-protein ligase and promotes in vitro monoubiquitination of caspases 3 and 7 J Biol Chem 2000 275: 26661–26664

    CAS  PubMed  Google Scholar 

  22. Chang YC, Lee YS, Tejima T, Tanaka K, Omura S, Heintz NH, Mitsui Y, Magae J . mdm2 and bax, downstream mediators of the p53 response, are degraded by the ubiquitin-proteasome pathway Cell Growth Differ 1998 9: 79–84

    CAS  PubMed  Google Scholar 

  23. Breitschopf K, Zeiher AM, Dimmeler S . Ubiquitin-mediateddegradation of the proapoptotic active form of bid: a functional consequence on apoptosis induction J Biol Chem 2000 275: 21648–21652

    CAS  PubMed  Google Scholar 

  24. Li B, Dou QP . Bax degradation by the ubiquitin/proteasome-dependent pathway: involvement in tumor survival and progression Proc Natl Acad Sci USA 2000 97: 3850–3855

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Marshansky V, Wang X, Bertrand R, Luo H, Duguid W, Chinnadurai G, Kanaan N, Vu MD, Wu J . Proteasomes modulate balance among proapoptotic and antiapoptotic Bcl-2 family members and compromise functioning of the electron transport chain in leukemic cells J Immunol 2001 166: 3130–3142

    CAS  PubMed  Google Scholar 

  26. Lee DH, Goldberg AL . Proteasome inhibitors: valuable new tools for cell biologists Trends Cell Biol 1998 8: 397–403

    CAS  PubMed  Google Scholar 

  27. Adams J, Palombella VJ, Elliott PJ . Proteasome inhibition: a new strategy in cancer treatment Invest New Drugs 2000 18: 109–121

    CAS  PubMed  Google Scholar 

  28. Dick LR, Cruikshank AA, Grenier L, Melandri FD, Nunes SL, Stein RL . Mechanistic studies on the inactivation of the proteasome by lactacystin: a central role for clasto-lactacystin beta-lactone J Biol Chem 1996 271: 7273–7276

    CAS  PubMed  Google Scholar 

  29. Fenteany G, Standaert RF, Lane WS, Choi S, Corey EJ, Schreiber SL . Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin Science 1995 268: 726–731

    CAS  PubMed  Google Scholar 

  30. Fenteany G, Schreiber SL . Lactacystin, proteasome function, and cell fate J Biol Chem 1998 273: 8545–8548

    CAS  PubMed  Google Scholar 

  31. Adams J, Behnke M, Chen S, Cruickshank AA, Dick LR, Grenier L, Klunder JM, Ma YT, Plamondon L, Stein RL . Potent and selective inhibitors of the proteasome: dipeptidyl boronic acids Bioorg Med Chem Lett 1998 8: 333–338

    CAS  PubMed  Google Scholar 

  32. Gardner RC, Assinder SJ, Christie G, Mason GGF, Markwell R, Wadsworth H, McLaughlin M, King R, Chabot-Fletcher MC, Breton JJ, Allsop D, Rivett AJ . Characterization of peptidyl boronic acid inhibitors of mammalian 20 S and 26 S proteasomes and their inhibition of proteasomes in cultured cells Biochem J 2000 346: 447–454

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Drexler HC . Activation of the cell death program by inhibition of proteasome function Proc Natl Acad Sci USA 1997 94: 855–860

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Almond JB, Snowden RT, Hunter A, Dinsdale D, Cain K, Cohen GM . Proteasome inhibitor-induced apoptosis of B-chroniclymphocytic leukaemia cells involves cytochrome c release and caspase activation, accompanied by formation of an 700 kDa Apaf-1 containing apoptosome complex Leukemia 2001 15: 1388–1397

    CAS  PubMed  Google Scholar 

  35. Delic J, Masdehors P, Omura S, Cosset JM, Dumont J, Binet JL, Magdelenet H . The proteasome inhibitor lactacystin induces apoptosis and sensitizes chemo- and radioresistant human chronic lymphocytic leukaemia lymphocytes to TNF-α-initiated apoptosis Br J Cancer 1998 77: 1103–1107

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Masdehors P, Omura S, Merle-Beral H, Mentz F, Cosset JM, Dumont J, Magdelenet H, Delic J . Increased sensitivity of CLL-derived lymphocytes to apoptotic death activation by the proteasome-specific inhibitor lactacystin Br J Haematol 1999 105: 752–757

    CAS  PubMed  Google Scholar 

  37. Masdehors P, Merle-Beral H, Maloum K, Omura S, Magdelenat H, Delic J . Deregulation of the ubiquitin system and p53 proteolysis modify the apoptotic response in B-CLL lymphocytes Blood 2000 96: 269–274

    CAS  PubMed  Google Scholar 

  38. Masdehors P, Merle-Beral H, Magdelenat H, Delic J . Ubiquitin-proteasome system and increased sensitivity of B-CLL lymphocytes to apoptotic death activation Leuk Lymphoma 2000 38: 499–504

    CAS  PubMed  Google Scholar 

  39. Chandra J, Niemer I, Gilbreath J, Kliche KO, Andreeff M, Freireich EJ, Keating M, McConkey DJ . Proteasome inhibitors induce apoptosis in glucocorticoid-resistant chronic lymphocytic leukemic lymphocytes Blood 1998 92: 4220–4229

    CAS  PubMed  Google Scholar 

  40. Adams J, Palombella VJ, Sausville EA, Johnson J, Destree A, Lazarus DD, Maas J, Pien CS, Prakash S, Elliott PJ . Proteasome inhibitors: a novel class of potent and effective antitumor agents Cancer Res 1999 59: 2615–2622

    CAS  PubMed  Google Scholar 

  41. Hirsch T, Dallaporta B, Zamzami N, Susin SA, Ravagnan L, Marzo I, Brenner C, Kroemer G . Proteasome activation occurs at an early, premitochondrial step of thymocyte apoptosis J Immunol 1998 161: 35–40

    CAS  PubMed  Google Scholar 

  42. Stefanelli C, Bonavita F, Stanic I, Pignatti C, Farruggia G, Masotti L, Guarnieri C, Calderera CM . Inhibition of etoposide-induced apoptosis with peptide aldehyde inhibitors of proteasome Biochem J 1998 332: 661–665

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Grimm LM, Goldberg AL, Poirier GG, Schwartz LM, Osborne BA . Proteasomes play an essential role in thymocyte apoptosis EMBO J 1996 15: 3835–3844

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Sadoul R, Fernandez PA, Quiquerez AL, Martinou I, Maki M, Schroter M, Becherer JD, Irmler M, Tschopp J, Martinou JC . Involvement of the proteasome in the programmed cell death of NGF-deprived sympathetic neurons EMBO J 1996 15: 3845–3852

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Watanabe K, Kubota M, Hamahata K, Lin Y, Usami I . Prevention of etoposide-induced apoptosis by proteasome inhibitors in a human leukemic cell line but not in fresh acute leukemia blasts: a differential role of NF-κ B activation Biochem Pharmacol 2000 60: 823–830

    CAS  PubMed  Google Scholar 

  46. Meriin AB, Gabai VL, Yaglom J, Shifrin VI, Sherman MY . Proteasome inhibitors activate stress kinases and induce Hsp72. Diverse effects on apoptosis J Biol Chem 1998 273: 6373–6379

    CAS  PubMed  Google Scholar 

  47. Hollstein M, Sidransky D, Vogelstein B, Harris CC . p53 mutations in human cancers Science 1991 253: 49–53

    Article  CAS  PubMed  Google Scholar 

  48. Maki CG, Huibregtse JM, Howley PM . In vivo ubiquitination and proteasome-mediated degradation of p53 Cancer Res 1996 56: 2649–2654

    CAS  PubMed  Google Scholar 

  49. Bratton SB, Cohen GM . Apoptotic death sensor: an organelle‘s alter ego? Trends Pharmacol Sci 2001 22: 306–315

    CAS  PubMed  Google Scholar 

  50. Vogelstein B, Lane D, Levine AJ . Surfing the p53 network Nature 2000 408: 307–310

    CAS  PubMed  Google Scholar 

  51. Lopes UG, Erhardt P, Yao R, Cooper GM . p53-dependent induction of apoptosis by proteasome inhibitors J Biol Chem 1997 272: 12893–12896

    CAS  PubMed  Google Scholar 

  52. An B, Goldfarb RH, Siman R, Dou QP . Novel dipeptidyl proteasome inhibitors overcome Bcl-2 protective function and selectively accumulate the cyclin-dependent kinase inhibitor p27 and induce apoptosis in transformed, but not normal, human fibroblasts Cell Death Differ 1998 5: 1062–1075

    CAS  PubMed  Google Scholar 

  53. Herrmann JL, Briones F, Brisbay S, Logothetis CJ, McDonnell TJ . Prostate carcinoma cell death resulting from inhibition of proteasome activity is independent of functional Bcl-2 and p53 Oncogene 1998 17: 2889–2899

    CAS  PubMed  Google Scholar 

  54. Dou QP, McGuire TF, Peng Y, An B . Proteasome inhibition leads to significant reduction of Bcr-Abl expression and subsequent induction of apoptosis in K562 human chronic myelogenous leukemia cells J Pharmacol Exp Ther 1999 289: 781–790

    CAS  PubMed  Google Scholar 

  55. Drexler HC, Risau W, Konerding MA . Inhibition of proteasome function induces programmed cell death in proliferating endothelial cells FASEB J 2000 14: 65–77

    CAS  PubMed  Google Scholar 

  56. Pagano M, Tam SW, Theodoras AM, Beer-Romero P, Del Sal G, Chau V, Yew PR, Draetta GF, Rolfe M . Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27 Science 1995 269: 682–685

    CAS  PubMed  Google Scholar 

  57. Lloyd RV, Erickson LA, Jin L, Kulig E, Qian X, Cheville JC, Scheithauer BW . p27kipl: a multifunctional cyclin-dependent kinase inhibitor with prognostic significance in human cancers Am J Pathol 1999 154: 313–323

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Orlowski RZ, Eswara JR, Lafond-Walker A, Grever MR, Orlowski M, Dang CV . Tumor growth inhibition induced in a murine model of human Burkitt's lymphoma by a proteasome inhibitor Cancer Res 1998 58: 4342–4348

    CAS  PubMed  Google Scholar 

  59. MacFarlane M, Cohen GM, Dickens M . JNK (c-Jun N-terminal kinase) and p38 activation in receptor-mediated and chemically-induced apoptosis of T-cells: differential requirements for caspase activation Biochem J 2000 348: 93–101

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Leppa S, Bohmann D . Diverse functions of JNK signaling and c-Jun in stress response and apoptosis Oncogene 1999 18: 6158–6162

    CAS  PubMed  Google Scholar 

  61. Kharbanda S, Saxena S, Yoshida K, Pandey P, Kaneki M, Wang Q, Cheng K, Chen YN, Campbell A, Sudha T, Yuan ZM, Narula J, Weichselbaum R, Nalin C, Kufe D . Translocation of SAPK/JNK to mitochondria and interaction with Bcl-XL in response to DNA damage J Biol Chem 2000 275: 322–327

    CAS  PubMed  Google Scholar 

  62. Tournier C, Hess P, Yang DD, Xu J, Turner TK, Nimnual A, Bar-Sagi D, Jones SN, Flavell RA, Davis RJ . Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway Science 2000 288: 870–874

    CAS  PubMed  Google Scholar 

  63. Chu ZL, McKinsey TA, Liu L, Gentry JJ, Malim MH, Ballard DW . Suppression of tumor necrosis factor-induced cell death by inhibitor of apoptosis c-IAP2 is under NF-κB control Proc Natl Acad Sci USA 1997 94: 10057–10062

    CAS  PubMed  PubMed Central  Google Scholar 

  64. You M, Ku PT, Hrdlickova R, Bose HR Jr . ch-IAP1, a member of the inhibitor-of-apoptosis protein family, is a mediator of the antiapoptotic activity of the v-Rel oncoprotein Mol Cell Biol 1997 17: 7328–7341

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Wang CY, Mayo MW, Korneluk RG, Goeddel DV, Baldwin AS Jr . NF-κB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation Science 1998 281: 1680–1683

    CAS  PubMed  Google Scholar 

  66. Zong WX, Edelstein LC, Chen C, Bash J, Gelinas C . The prosurvival Bcl-2 homolog Bfl-1/A1 is a direct transcriptional target of NF-κB that blocks TNFα-induced apoptosis Genes Dev 1999 13: 382–387

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Grumont RJ, Rourke IJ, Gerondakis S . Rel-dependent induction of A1 transcription is required to protect B cells from antigen receptor ligation-induced apoptosis Genes Dev 1999 13: 400–411

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Cusack JC Jr, Liu R, Houston M, Abendroth K, Elliott PJ, Adams J, Baldwin AS . Enhanced chemosensitivity to CPT-11 with proteasome inhibitor PS-341: implications for systemic nuclear factor-κB inhibition Cancer Res 2001 61: 3535–3540

    CAS  PubMed  Google Scholar 

  69. Sunwoo JB, Chen Z, Dong G, Yeh N, Bancroft CC, Sausville E, Adams J, Elliott P, Van Waes C . Novel proteasome inhibitor PS-341 inhibits activation of nuclear factor-κB, cell survival, tumor growth, and angiogenesis in squamous cell carcinoma Clin Cancer Res 2001 7: 1419–1428

    CAS  PubMed  Google Scholar 

  70. Oikawa T, Sasaki T, Nakamura M, Shimamura M, Tanahashi N, Omura S, Tanaka K . The proteasome is involved in angiogenesis Biochem Biophys Res Commun 1998 246: 243–248

    CAS  PubMed  Google Scholar 

  71. Hideshima T, Richardson P, Chauhan D, Palombella VJ, Elliott PJ, Adams J, Anderson K . The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells Cancer Res 2001 61: 3071–3076

    CAS  PubMed  Google Scholar 

  72. Dou QP, Li B . Proteasome inhibitors as potential novel anticancer agents Drug Resistance Updates 1999 2: 215–223

    CAS  PubMed  Google Scholar 

  73. Spataro V, Toda T, Craig R, Seeger M, Dubiel W, Harris AL, Norbury C . Resistance to diverse drugs and ultraviolet light conferred by overexpression of a novel human 26 S proteasome subunit J Biol Chem 1997 272: 30470–30475

    CAS  PubMed  Google Scholar 

  74. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X . Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade Cell 1997 91: 479–489

    CAS  PubMed  Google Scholar 

  75. Cain K, Brown DG, Langlais C, Cohen GM . Caspase activation involves the formation of the aposome, a large (700 kDa) caspase-activating complex J Biol Chem 1999 274: 22686–22692

    CAS  PubMed  Google Scholar 

  76. Bratton SB, Walker G, Srinivasula SM, Sun XM, Butterworth M, Alnemri ES, Cohen GM . Recruitment, activation and retention of caspases-9 and -3 by Apaf-1 apoptosome and associated XIAP complexes EMBO J 2001 20: 998–1009

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Teicher BA, Ara G, Herbst R, Palombella VJ, Adams J . The proteasome inhibitor PS-341 in cancer therapy Clin Cancer Res 1999 5: 2638–2645

    CAS  PubMed  Google Scholar 

  78. Sun J, Nam S, Lee CS, Li B, Coppola D, Hamilton AD, Dou QP, Sebti SM . CEP1612, a dipeptidyl proteasome inhibitor, induces p21WAF1 and p27KIP1 expression and apoptosis and inhibits the growth of the human lung adenocarcinoma A-549 in nude mice Cancer Res 2001 61: 1280–1284

    CAS  PubMed  Google Scholar 

  79. Andre P, Groettrup M, Klenerman P, de Giuli R, Booth BL Jr . Cerundolo V, Bonneville M, Jotereau F, Zinkernagel RM, Lotteau V. An inhibitor of HIV-1 protease modulates proteasome activity, antigen presentation, and T cell responses Proc Natl Acad Sci USA 1998 95: 13120–13124

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Piccinini M, Tazartes O, Mezzatesta C, Ricotti E, Bedino S, Grosso F, Dianzani U, Tovo PA, Mostert M, Musso M, Rinaudo MT . Proteasomes are a target of the anti-tumour drug vinblastine Biochem J 2001 356: 835–841

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Soengas MS, Alarcon RM, Yoshida H, Giaccia AJ, Hakem R, Mak TW, Lowe SW . Apaf-1 and caspase-9 in p53-dependent apoptosis and tumor inhibition Science 1999 284: 156–159

    CAS  PubMed  Google Scholar 

  82. Sin N, Meng L, Auth H, Crews CM . Eponemycin analogues: syntheses and use as probes of angiogenesis Bioorg Med Chem 1998 6: 1209–1217

    CAS  PubMed  Google Scholar 

  83. Imajoh-Ohmi S, Kawaguchi T, Sugiyama S, Tanaka K, Omura S, Kikuchi H . Lactacystin, a specific inhibitor of the proteasome, induces apoptosis in human monoblast U937 cells Biochem Biophys Res Commun 1995 217: 1070–1077

    CAS  PubMed  Google Scholar 

  84. Shinohara K, Tomioka M, Nakano H, Tone S, Ito H, Kawashima S . Apoptosis induction resulting from proteasome inhibition Biochem J 1996 317: 385–388

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Grassilli E, Benatti F, Dansi P, Giammarioli AM, Malorni W, Franceschi C, Disederio MA . Inhibition of proteasome function prevents thymocyte apoptosis: involvement of ornithine decarboxylase Biochem Biophys Res Commun 1998 250: 293–297

    CAS  PubMed  Google Scholar 

  86. Lin KI, Baraban JM, Ratan RR . Inhibition versus induction of apoptosis by proteasome inhibitors depends on concentration Cell Death Differ 1998 5: 577–583

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the MRC and in part by a European Union Grant (QLG1-1999–00739). JBA is in receipt of an MRC studentship. We thank Drs Q Ping Dou, C Norbury and P Elliott for helpful comments. We apologize to many of our colleagues whose work we were unable to cite through space limitations.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Almond, J., Cohen, G. The proteasome: a novel target for cancer chemotherapy. Leukemia 16, 433–443 (2002). https://doi.org/10.1038/sj.leu.2402417

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402417

Keywords

This article is cited by

Search

Quick links