Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

The enhanced in vitro hematopoietic activity of leridistim, a chimeric dual G-CSF and IL-3 receptor agonist

Abstract

The in vitro activity of leridistim was characterized for cell proliferation, generation of colony-forming units (CFU) and differentiation of CD34+ cells. In AML-193.1.3 cells, leridistim exhibited a significant increase in potency compared to rhG-CSF, SC-65303 (an IL-3 receptor agonist) or an equimolar combination of rhG-CSF and SC-65303. CFU-GM assays demonstrated that at 50% of the maximum response, the relative potency of leridistim was 12-fold greater than the combination of rhG-CSF and rhIL-3 and 44-fold more potent than rhG-CSF alone. In multi-lineage CFU assays, a combination of erythropoietin (rhEPO) and leridistim resulted in greater numbers of BFU-E, CFU-GEMM and CFU-Mk than rhEPO alone. Ex vivo culture of peripheral blood or bone marrow CD34+ cells with leridistim substantially increased total viable cells over cultures stimulated with rhG-CSF, SC-65303, or a combination of rhG-CSF and SC-65303. Culture with leridistim, resulted in a greater increase in myeloid (CD15+/CD11b+), monocytic (CD41−/CD14+) and megakaryocytic (CD41+/CD14−) precursor cells without depleting the progenitor pool (CD34+/CD15−/CD11b−). These results demonstrate that leridistim is a more potent stimulator of hematopoietic proliferation and differentiation than the single receptor agonists (rhG-CSF and SC-65303) either alone or combined. These unique attributes suggest that leridistim may enhance hematopoietic reconstitution following myelosuppressive chemotherapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Ganser A, Karthaus M . Clinical use of hematopoietic growth factors Curr Opin Oncol 1996 8: 265–269

    Article  CAS  Google Scholar 

  2. Ganser A, Karthaus M . Clinical use of hematopoietic growth factors in the myelodysplastic syndromes Leuk Lymphoma 1997 26 (Suppl. 1): 13–27

    Article  Google Scholar 

  3. Fraipont V, Sautois B, Baudoux E, Pereira M, Fassotte MF, Hermanne JP, Jerusalem G, Longree L, Schaaf-Lafontaine N, Fillet G, Beguin Y . Successful mobilization of peripheral blood HPCs with G-CSF alone in patients failing to achieve sufficient numbers of CD34+ cells and/or CFU-GM with chemotherapy and G-CSF Transfusion 2000 40: 339–347

    Article  CAS  Google Scholar 

  4. Thatcher N, Girling DJ, Hopwood P, Sambrook RJ, Qian W, Stephens RJ . Improving survival without reducing quality of life in small-cell lung cancer patients by increasing the dose-intensity of chemotherapy with granulocyte colony-stimulating factor support: results of a British Medical Research Council Multicenter Randomized Trial. Medical Research Council Lung Cancer Working Party J Clin Oncol 2000 18: 395–404

    Article  CAS  Google Scholar 

  5. Crawford J, Ozer H, Stoller R, Johnson D, Lyman G, Tabbara I, Kris M, Grous J, Picozzi V, Rausch G . Reduction by granulocyte colony-stimulating factor of fever and neutropenia induced by chemotherapy in patients with small-cell lung cancer N Engl J Med 1991 325: 164–170

    Article  CAS  Google Scholar 

  6. Gordon MS, Hoffman R . Growth factors affecting human thrombocytopoiesis: potential agents for the treatment of thrombocytopenia Blood 1992 80: 302–307

    CAS  PubMed  Google Scholar 

  7. Kawano Y, Takaue Y, Mimaya J, Horikoshi Y, Watanabe T, Abe T, Shimizu Y, Matsushita T, Kikuta A, Watanabe A, Iwai A, Ito E, Endo M, Kodani N, Ohta S, Gushi K, Azuma H, Etoh T, Okamoto Y, Amano K, Hattori H, Eguchi H, Kuroda Y . Marginal benefit/disadvantage of granulocyte colony-stimulating factor therapy after autologous blood stem cell transplantation in children: results of a prospective randomized trial. The Japanese Cooperative Study Group of PBSCT Blood 1998 92: 4040–4046

    CAS  PubMed  Google Scholar 

  8. Ballestrero A, Ferrando F, Garuti A, Basta P, Gonella R, Stura P, Mela GS, Sessarego M, Gobbi M, Patrone F . Comparative effects of three cytokine regimens after high-dose cyclophosphamide: granulocyte colony-stimulating factor, granulocyte–macrophage colony-stimulating factor (GM-CSF), and sequential interleukin-3 and GM-CSF J Clin Oncol 1999 17: 1296–1303

    Article  CAS  Google Scholar 

  9. Paquette RL, Zhou JY, Yang YC, Clark SC, Koeffler HP . Recombinant gibbon interleukin-3 acts synergistically with recombinant human G-CSF and GM-CSF in vitro Blood 1988 71: 1596–1600

    CAS  PubMed  Google Scholar 

  10. Bot FJ, van Eijk L, Schipper P, Lowenberg B . Effects of human interleukin-3 on granulocytic colony-forming cells in human bone marrow Blood 1989 73: 1157–1160

    CAS  PubMed  Google Scholar 

  11. McNiece IK, Langley KE, Zsebo KM . Recombinant human stem cell factor synergises with GM-CSF, G-CSF, IL-3 and epo to stimulate human progenitor cells of the myeloid and erythroid lineages Exp Hematol 1991 19: 226–231

    CAS  PubMed  Google Scholar 

  12. Olofsson TB . Growth regulation of hematopoietic cells. An overview Acta Oncol 1991 30: 889–902

    Article  CAS  Google Scholar 

  13. Farese AM, Williams DE, Seiler FR, MacVittie TJ . Combination protocols of cytokine therapy with interleukin-3 and granulocyte–macrophage colony-stimulating factor in a primate model of radiation-induced marrow aplasia Blood 1993 82: 3012–3018

    CAS  PubMed  Google Scholar 

  14. Huhn RD, Yurkow EJ, Tushinski R, Clarke L, Sturgill MG, Hoffman R, Sheay W, Cody R, Philipp C, Resta D, George M . Recombinant human interleukin-3 (rhIL-3) enhances the mobilization of peripheral blood progenitor cells by recombinant human granulocyte colony-stimulating factor (rhG-CSF) in normal volunteers Exp Hematol 1996 24: 839–847

    CAS  PubMed  Google Scholar 

  15. McNiece IK, McGrath HE, Quesenberry PJ . Granulocyte colony-stimulating factor augments in vitro megakaryocyte colony formation by interleukin-3 Exp Hematol 1988 16: 807–810

    CAS  PubMed  Google Scholar 

  16. Migliaccio G, Migliaccio AR, Adamson JW . In vitro differentiation of human granulocyte/macrophage and erythroid progenitors: comparative analysis of the influence of recombinant human erythropoietin, G-CSF, GM-CSF, and IL-3 in serum-supplemented and serum- deprived cultures Blood 1988 72: 248–256

    CAS  PubMed  Google Scholar 

  17. Misago M, Chiba S, Kikuchi M, Tsukada J, Sato T, Oda S, Eto S . Effect of recombinant human interleukin 3, granulocyte–macrophage colony-stimulating factor and granulocyte colony-stimulating factor on human BFU-e in serum-free cultures Int J CellCloning 1989 7: 39–49

    CAS  Google Scholar 

  18. Takaue Y, Kawano Y, Reading CL, Watanabe T, Abe T, Ninomiya T, Shimizu E, Ogura T, Kuroda Y, Yokobayashi A . Effects of recombinant human G-CSF, GM-CSF, IL-3, and IL-1 alpha on the growth of purified human peripheral blood progenitors Blood 1990 76: 330–335

    CAS  PubMed  Google Scholar 

  19. Aglietta M, Sanavio F, Stacchini A, Morelli S, Fubini L, Severino A, Pasquino P, Volta C, Bretti S, Tafuto S . Interleukin-3 in vivo: kinetic of response of target cells Blood 1993 82: 2054–2061

    CAS  PubMed  Google Scholar 

  20. Lindemann A, Mertelsmann R . Interleukin-3: structure and function Cancer Invest 1993 11: 609–623

    Article  CAS  Google Scholar 

  21. Sieff CA, Niemeyer CM, Nathan DG, Ekern SC, Bieber FR, Yang YC, Wong G, Clark SC . Stimulation of human hematopoietic colony formation by recombinant gibbon multi-colony-stimulating factor or interleukin 3 J Clin Invest 1987 80: 818–823

    Article  CAS  Google Scholar 

  22. Schrader JW . The panspecific hemopoietin of activated T lymphocytes (interleukin-3) Annu Rev Immunol 1986 4: 205–230

    Article  CAS  Google Scholar 

  23. Winton EF, Srinivasiah J, Kim BK, Hillyer CD, Strobert EA, Orkin JL, Swenson RB, McClure HM, Myers LA, Saral R . Effect of recombinant human interleukin-6 (rhIL-6) and rhIL-3 on hematopoietic regeneration as demonstrated in a nonhuman primate chemotherapy model Blood 1994 84: 65–73

    CAS  PubMed  Google Scholar 

  24. Metcalf D, Nicola NA . The Hematopoietic Colony-stimulating Factors: From Biology to Clinical Applications Cambridge: Cambridge University Press 1995

    Book  Google Scholar 

  25. Olins PO, Bauer SC, Braford-Goldberg S, Sterbenz K, Polazzi JO, Caparon MH, Klein BK, Easton AM, Paik K, Klover JA . Saturation mutagenesis of human interleukin-3 J Biol Chem 1995 270: 23754–23760

    Article  CAS  Google Scholar 

  26. Klein BK, Olins PO, Bauer SC, Caparon MH, Easton AM, Braford SR, Abrams MA, Klover JA, Paik K, Thomas JW, Hood WF, Shieh JJ, Polazzi JO, Donnelly AM, Zeng DL, Welply JK, McKearn JP . Use of combinatorial mutagenesis to select for multiply substituted human interleukin-3 variants with improved pharmacologic properties Exp Hematol 1999 27: 1746–1756

    Article  CAS  Google Scholar 

  27. Thomas JW, Baum CM, Hood WF, Klein B, Monahan JB, Paik K, Staten N, Abrams M, McKearn JP . Potent interleukin 3 receptor agonist with selectively enhanced hematopoietic activity relative to recombinant human interleukin 3 Proc Natl Acad Sci USA 1995 92: 3779–3783

    Article  CAS  Google Scholar 

  28. Scheding S, Meister B, Buhring HJ, Baum CM, Mc Kearn JP, Bock T, Kanz L, Brugger W . Effective ex vivo generation of granulopoietic postprogenitor cells from mobilized peripheral blood CD34(+) cells Exp Hematol 2000 28: 460–470

    Article  CAS  Google Scholar 

  29. MacVittie TJ, Farese AM, Herodin F, Grab LB, Baum CM, McKearn JP . Combination therapy for radiation-induced bone marrow aplasia in nonhuman primates using synthokine SC-55494 and recombinant human granulocyte colony-stimulating factor Blood 1996 87: 4129–4135

    CAS  PubMed  Google Scholar 

  30. Fleming WH, Lankford-Turner P, Turner CW, Wong J, Strobert E, McKearn JP . Administration of daniplestim and granulocyte colony-stimulating factor for the mobilization of hematopoieticprogenitor cells in nonhuman primates Biol Blood Marrow Transplant 1999 5: 8–14

    Article  CAS  Google Scholar 

  31. DiPersio JF, Schuster MW, Abboud CN, Winter JN, Santos VR, Collins DM, Sherman JW, Baum CM . Mobilization of peripheral-blood stem cells by concurrent administration of daniplestim and granulocyte colony-stimulating factor in patients with breast cancer or lymphoma J Clin Oncol 2000 18: 2762–2771

    Article  CAS  Google Scholar 

  32. McWherter CA, Feng Y, Zurfluh LL, Klein BK, Baganoff MP, Polazzi JO, Hood WF, Paik K, Abegg AL, Grabbe ES, Shieh JJ, Donnelly AM, McKearn JP . Circular permutation of the granulocyte colony-stimulating factor receptor agonist domain of myelopoietin Biochemistry 1999 38: 4564–4571

    Article  CAS  Google Scholar 

  33. Monahan JB, Hood WF, Welply JK, Shieh JJ, Polazzi JO, Li X . Bivalent binding and signaling characteristics of Leridistim, a novel chimeric dual agonist of interleukin-3 and granulocyte colony-stimulating factor receptors Exp Hematol 2001 29: 416–424

    Article  CAS  Google Scholar 

  34. White MK, McCubrey JA . Suppression of apoptosis: role in cell growth and neoplasia Leukemia 2001 15: 1011–1021

    Article  CAS  Google Scholar 

  35. Blalock WL, Weinstein-Oppenheimer C, Chang F, Hoyle PE, Wang XY, Algate PA, Franklin RA, Oberhaus SM, Steelman LS, McCubrey JA . Signal transduction, cell cycle regulatory, and anti-apoptotic pathways regulated by IL-3 in hematopoietic cells: possible sites for intervention with anti-neoplastic drugs Leukemia 1999 13: 1109–1166

    Article  CAS  Google Scholar 

  36. McCubrey JA, Blalock WL, Saleh O, Pearce M, Burrows C, Steelman LS, Lee JT, Franklin RA, Oberhaus SM, Moye PW, Doshi PD, McKearn JP . Enhanced ability of daniplestim and myelopoietin-1 to suppress apoptosis in human hematopoietic cells Leukemia 2001 15: 1203–1216

    Article  CAS  Google Scholar 

  37. MacVittie TJ, Farese AM, Davis TA, Lind LB, McKearn JP . Myelopoietin, a chimeric agonist of human interleukin 3 and granulocyte colony-stimulating factor receptors, mobilizes CD34+ cells that rapidly engraft lethally x-irradiated nonhuman primates Exp Hematol 1999 27: 1557–1568

    Article  CAS  Google Scholar 

  38. MacVittie TJ, Farese AM, Smith WG, Baum CM, Burton E, McKearn JP . Myelopoietin, an engineered chimeric IL-3 and G-CSF receptor agonist, stimulates multilineage hematopoietic recovery in a nonhuman primate model of radiation-induced myelosuppression Blood 2000 95: 837–845

    CAS  PubMed  Google Scholar 

  39. Feng Y, Minnerly JC, Zurfluh LL, Joy WD, Hood WF, Abegg AL, Grabbe ES, Shieh JJ, Thurman TL, McKearn JP, McWherter CA . Circular permutation of granulocyte colony-stimulating factor Biochemistry 1999 38: 4553–4563

    Article  CAS  Google Scholar 

  40. Avalos BR . Molecular analysis of the granulocyte colony-stimulating factor receptor Blood 1996 88: 761–777

    CAS  PubMed  Google Scholar 

  41. Dobo I, Allegraud A, Navenot JM, Boasson M, Bidet JM, Praloran V . Collagen matrix: an attractive alternative to agar and methylcellulose for the culture of hematopoietic progenitors in autologous transplantation products J Hematother 1995 4: 281–287

    Article  CAS  Google Scholar 

  42. Lanotte M . Terminal differentiation of hemopoietic cell clones cultured in tridimensional collagen matrix: in situ cell morphology and enzyme histochemistry analysis Biol Cell 1984 50: 107–120

    Article  CAS  Google Scholar 

  43. Dobo I, Pineau D, Zandecki M, Hunault M, Hermouet S . Endogenous erythroid and megakaryocytic colony formation in serum-free, cytokine-free collagen gels J Hematother Stem Cell Res 1999 8: 601–607

    Article  CAS  Google Scholar 

  44. Smith SL, Bender JG, Maples PB, Unverzagt K, Schilling M, Lum L, Williams S, Van Epps DE . Expansion of neutrophil precursors and progenitors in suspension cultures of CD34+ cells enriched from human bone marrow Exp Hematol 1993 21: 870–877

    CAS  PubMed  Google Scholar 

  45. Wognum AW, de Jong MO, Wagemaker G . Differential expression of receptors for hemopoietic growth factors on subsets of CD34+ hemopoietic cells Leuk Lymphoma 1996 24: 11–25

    Article  CAS  Google Scholar 

  46. McKinstry WJ, Li CL, Rasko JE, Nicola NA, Johnson GR, Metcalf D . Cytokine receptor expression on hematopoietic stem and progenitor cells Blood 1997 89: 65–71

    CAS  PubMed  Google Scholar 

  47. Carow CE, Hangoc G, Broxmeyer HE . Human multipotential progenitor cells (CFU-GEMM) have extensive replating capacity for secondary CFU-GEMM: an effect enhanced by cord blood plasma Blood 1993 81: 942–949

    CAS  PubMed  Google Scholar 

  48. Kimura T, Sakabe H, Tanimukai S, Abe T, Urata Y, Yasukawa K, Okano A, Taga T, Sugiyama H, Kishimoto T, Sonoda Y . Simultaneous activation of signals through gp130, c-kit, and interleukin-3 receptor promotes a trilineage blood cell production in the absence of terminally acting lineage-specific factors Blood 1997 90: 4767–4778

    CAS  PubMed  Google Scholar 

  49. Quesenberry PJ, McGrath HE, Williams ME, Robinson BE, Deacon DH, Clark S, Urdal D, McNiece IK . Multifactor stimulation of megakaryocytopoiesis: effects of interleukin 6 Exp Hematol 1991 19: 35–41

    CAS  PubMed  Google Scholar 

  50. Stahl CP, Winton EF, Monroe MC, Haff E, Holman RC, Myers L, Liehl E, Evatt BL . Differential effects of sequential, simultaneous, and single agent interleukin-3 and granulocyte–macrophage colony-stimulating factor on megakaryocyte maturation and platelet response in primates Blood 1992 80: 2479–2485

    CAS  PubMed  Google Scholar 

  51. Farese AM, Casey DB, Smith WG, Vigneulle RM, McKearn JP, MacVittie TJ . Leridistem, a chimeric dual G-CSF and IL-3 receptor agonist, enhances multilineage hematopoietic recovery in a non-human primate model of radiation-induced myelosuppression: effect of schedule, dose and route of administration Stem Cells 2001 19: 522–533

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Kathryn Young for her technical assistance, Alfred Balch and Jeanne Sebaugh for statistical analysis, and Charles McWherter for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abegg, A., Vickery, L., Bremer, M. et al. The enhanced in vitro hematopoietic activity of leridistim, a chimeric dual G-CSF and IL-3 receptor agonist. Leukemia 16, 316–326 (2002). https://doi.org/10.1038/sj.leu.2402366

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402366

Keywords

This article is cited by

Search

Quick links