Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Differentiation

Transforming growth factor-β1 transcriptionally activates CD34 and prevents induced differentiation of TF-1 cells in the absence of any cell-cycle effects

Abstract

A number of cytokines modulate self-renewal and differentiation of hematopoietic elements. Among these is transforming growth factor β1 (TGF-β1), which regulates cell cycle and differentiation of hematopoietic cells, but has pleiotropic activities depending on the state of responsiveness of the target cells. It has been previously shown by us and other authors that TGF-β1 maintains human CD34+ hematopoietic progenitors in an undifferentiated state, independently of any cell cycle effects, and that depletion of TGF-β1 triggers differentiation accompanied by a decrease in CD34 antigen expression. In the present work, we show that exogenous TGF-β1 upregulates the human CD34 antigen in the CD34+ cell lines TF-1 and KG-1a, but not in the more differentiated CD34 cell lines HL-60 and K-562. We further studied this effect in the pluripotent erythroleukemia cell line TF-1. Here, TGF-β1 did not effect cell growth, but induced transcriptional activation of full-length CD34 and prevented differentiation induced by differentiating agents. This effect was associated with nuclear translocation of Smad-2, activation of TAK-1, and with a dramatic decrease in p38 phosphorylation. In other systems TGF-β1 has been shown to activate a TGF-β-activated kinase 1 (TAK1), which in turn, activates p38. The specific inhibitor of p38 phosphorylation, SB202190, also increased CD34 RNA expression, indicating the existence of a link between p-38 inhibition by TGF-β1 and CD34 overexpression. Our data demonstrate that TGF-β1 transcriptionally activates CD34 and prevents differentiation of TF-1 cells by acting independently through the Smad, TAK1 and p38 pathways, and thus provide important clues for the understanding of hematopoietic development and a potential tool to modify response of hematopoietic cells to mitogens or differentiating agents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Krause DS, Fackler MJ, Civin CI, May SW . CD34: structure, biology and clinical utility Blood 1996 87: 1–13

    CAS  PubMed  Google Scholar 

  2. Bhatia M, Bonnet M, Murdoch B, Gan GI, Dick E . A newly discovered class of human hematopoietic cells with SCID-repopulating activity Nat Med 1998 4: 1038–1045

    Article  CAS  Google Scholar 

  3. Nakamura Y, Ando K, Chargui J, Kawada H, Sato T, Tsuji T, Hotta T, Kato S . Ex vivo generation of CD34+ cells from CD34 hematopoietic cells Blood 1999 94: 4053–4059

    CAS  PubMed  Google Scholar 

  4. Healy L, May G, Gale K, Grosveld F, Greaves M, Enver T . The stem cell antigen CD34 functions as a regulator of hemopoietic cell adhesion Proc Natl Acad Sci USA 1995 92: 12240–12244

    Article  CAS  Google Scholar 

  5. Fackler MJ, Krause DS, Smith OM, Civin CI, May SW . Full-length but not truncated CD34 inhibits hematopoietic cell differentiation of M1 Blood 1995 85: 3040–3047

    CAS  PubMed  Google Scholar 

  6. Knapp W, Strobl HO, Scheineker C, Bello-Fernandez C, Majdic O . Molecular characterization of CD34+ human hematopoietic progenitor cells Ann Hematol 1995 70: 281–296

    Article  CAS  Google Scholar 

  7. Radomska HS, Satterthwaite AB, Taranenko N, Narravula S, Krause DS, Tenen DG . A nuclear factor Y (NFY) site positively regulates the human CD34 stem cell gene Blood 1999 94: 3772–3780

    CAS  PubMed  Google Scholar 

  8. Satterthwaite AB, Borson R, Tenen DG . Regulation of the gene for CD34, a human hematopoietic stem cell antigen, in KG-1 cells Blood 1990 75: 2299–2304

    CAS  PubMed  Google Scholar 

  9. Fackler MJ, Civin CI, May SW . Up-regulation of surface CD34 is associated with protein kinase c-mediated hyperphosphorylation of CD34 J Biol Chem 1992 267: 17540–17546

    CAS  PubMed  Google Scholar 

  10. Fortunel NO, Hatzfeld A, Hatzfeld JA . Transforming growth factor β: pleiotropic role in the regulation of hematopoiesis Blood 2000 96: 2022–2036

    CAS  PubMed  Google Scholar 

  11. Massagué J . The transforming growth factor β family Ann Rev Cell Biol 1990 6: 597–641

    Article  Google Scholar 

  12. Lastres P, Letamendia A, Zhang H, Rius C, Almendro N, Raab U, Lopez LA, Langa C, Fabra A, Letarte M, Bernabeu C . Endoglin modulates cellular responses to TGF-beta 1 J Cell Biol 1996 133: 1109–1121

    Article  CAS  Google Scholar 

  13. Miyazono K . TGF-β receptors and signal transduction Int J Hematol 1997 65: 97–104

    Article  CAS  Google Scholar 

  14. Massagué J . TGF-β signal transduction Ann Rev Biochem 1998 67: 753–791

    Article  Google Scholar 

  15. Chen Y-G, Hata A, Lo RS, Wotton D, Shi Y, Pavletich N, Massagué J . Determinants of specificity in TGF-β signal transduction Genes Dev 1998 12: 2144–2152

    Article  CAS  Google Scholar 

  16. Piao YF, Ychijo H, Miyagawa K, Ohashi H, Takaku F, Miyazono K . Latent form of transforming growth factor-beta 1 acts as a potent growth inhibitor of a human erythroleukemia cell line Biochem Biophys Res Commun 1990 167: 27–32

    Article  CAS  Google Scholar 

  17. Chen LL, Dean A, Jenkinson T, Mendelson J . Effect of transforming growth factor-beta 1 on proliferation and induction of hemoglobin accumulation in K-562 cells Blood 1989 74: 2368–2375

    CAS  PubMed  Google Scholar 

  18. Piacibello W, Severino A, Stacchini A, Aglietta M . Differential effects of transforming growth factor-beta1 on the proliferation of human lymphoid and myeloid leukemia cells Haematologica 1991 76: 460–466

    CAS  PubMed  Google Scholar 

  19. Klampfer L, Zhang H, Nimer SD . GM-CSF rescues TF-1 cells from growth factor withdrawal-induced, but not differentiation-induced apoptosis: the role of BCL-2 and MCL-1 Cytokine 1999 11: 849–855

    Article  CAS  Google Scholar 

  20. Chretien S, Varlet P, Verdier F, Gobert S, Cartron JP, Gisselbrecht S, Lacombe C . Erythropoietin-induced erythroid differentiation of the human erythroleukemia cell line TF-1 correlates with impaired STAT5 activation EMBO J 1996 15: 4174–4181

    Article  CAS  Google Scholar 

  21. Pierelli L, Bonanno G, Rutella S, Marone M, Scambia G, Leone G . CD105 (endoglin) expression on hematopoietic stem/progenitor cells Leuk Lymphoma (in press)

  22. Marone M, Bonanno G, Rutella S, Leone G, Scambia G, Pierelli L . Survival and cell cycle control in early hematopoiesis: role of bcl-2 and of the cyclin dependent kinase inhibitors p27 and p21 Leuk Lymphoma (in press)

  23. Pierelli L, Marone M, Bonanno G, Battaglia A, Mozzetti S, Rumi C, Mancuso S, Leone G, Scambia G . Modulation of bcl-2 and p27 in primitive, proliferating hematopoietic progenitors by autocrine TGF-beta1 is a cell cycle independent effect and influences their hematopoietic potential Blood 2000 95: 3001–3010

    CAS  PubMed  Google Scholar 

  24. Batard P, Monier MN, Fortunel N, Ducos K, Sansilvestri-Morel P, Phan T, Hatzfeld A, Hatzfeld JA . TGF-(beta)1 maintains hematopoietic immaturity by a reversible negative control of cell cycle and induces CD34 antigen up-modulation J Cell Sci 2000 113: 383–390

    CAS  PubMed  Google Scholar 

  25. Ormerod MG . Analysis of cell proliferation using the bromodeoxyuridine/Hoechst-ethidium bromide method Meth Mol Biol 1997 75: 357–365

    CAS  Google Scholar 

  26. Pierelli L, Scambia G, Fattorossi A, Bonanno G, Battaglia A, Rumi C, Marone M, Mozzetti S, Rutella S, Menichella G, Benedetti-Panici P, Mancuso S, Leone G . Functional, phenotypic and molecular characterization of cytokine low-responding circulating CD34+ hematopoietic progenitors Br J Haematol 1998 102: 1139–1150

    Article  CAS  Google Scholar 

  27. Marone M, Scambia G, Mozzetti S, Ferrandina G, Iacovella S, De Pasqua A, Benedetti-Panici P, Mancuso S . bcl-2, bax, bcl-xl and bcl-xs expression in normal and neoplastic ovarian tissues Clin Cancer Res 1998 4: 517–524

    CAS  PubMed  Google Scholar 

  28. Chelly J, Kaplan J-C, Maire P, Gautron S, Kahn A . Transcription of the dystrophin gene in human muscle and non-muscle tissues Nature 1988 330: 858–860

    Article  Google Scholar 

  29. Wang TTY, Phang JM . Effects of estrogen on apoptotic pathways in human breast cancer cell line MCF-7 Cancer Res 1995 55: 2487–2489

    CAS  PubMed  Google Scholar 

  30. Bargou RC, Daniel PT, Mapara MY, Bommert K, Wagener C, Kallinich B, Royer HD, Dorken B . Expression of the bcl-2 gene family in normal and malignant breast tissue: low bax-α expression in tumor cells correlates with resistance towards apoptosis Int J Cancer 1995 60: 854–859

    Article  CAS  Google Scholar 

  31. Morosetti R, Park DJ, Chumakov AM, Grillier I, Shiohara M, Gombart AF, Nakamaki T, Wenberg K, Koeffler HP . A novel, myeloid transcription factor, C/EBPε, is upregulated during granulocytic, but not monocytic, differentiation Blood 1997 90: 2591–2600

    CAS  PubMed  Google Scholar 

  32. Ferlini C, Scambia G, Marone M, Distefano M, Gaggini C, Ferrandina G, Fattorossi A, Isola G, Benedetti-Panici P, Mancuso S . Tamoxifen induces oxidative stress and apoptosis in oestrogen receptor-negative human cancer cell lines Br J Cancer 1999 79: 257–263

    Article  CAS  Google Scholar 

  33. Atfi A, Djelloul S, Chastre E, Davis R, Gespach C . Evidence for a role of Rho-like GTPases and Stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) in transforming growth factor β-mediated signaling J Biol Chem 1997 272: 1429–1432

    Article  CAS  Google Scholar 

  34. Inoki K, Ishida T, Mori H, Maeda S, Koya D, Sugimoto T, Kikkawa R . Role of mitogen-activated protein kinases as downstream effectors of transforming growth factor-beta in mesangial cells Kidney Int 2000 58 (Suppl 77): S76–S80

    Article  Google Scholar 

  35. Mucsi I, Skorecki KL, Goldberg HJ . Extracellular signal-regulated kinase and the small GTP-binding protein, Rac, contribute to the effects of transforming growth factor-β1 on gene expression J Biol Chem 1996 271: 16567–16572

    Article  CAS  Google Scholar 

  36. Wang W, Zhou G, Hu MC-T, Yao Z, Tan T-H . Activation of the hematopoietic progenitor kinase-1 (HPK1)-dependent, stress-activated c-Jun N-terminal kinase (JNK) pathway by transforming growth factor βTGF-β)-activated kinase (TAK1), a kinase mediator of TGF-β signal transduction J Biol Chem 1997 272: 22771–22775

    Article  CAS  Google Scholar 

  37. Radomska HS, Satterthwaite AB, Burn TC, Oliff IA, Tenen DG . Multiple control elements are required for expression of the human CD34 gene Gene 1998 222: 305–318

    Article  CAS  Google Scholar 

  38. Perrotti D, Melotti P, Skorski T, Casella I, Peschle C, Calabretta B . Overexpression of the zinc finger protein MZF1 inhibits hematopoietic development from embryonic stem cells: correlation with negative regulation of CD34 and c-myb promoter activity Mol Cell Biol 1995 15: 6075–6087

    Article  CAS  Google Scholar 

  39. Sato T, Laver JH, Ogawa M . Reversible expression of CD34 by murine hematopoietic stem cells Blood 1999 94: 2548–2554

    CAS  PubMed  Google Scholar 

  40. Hu X, Moscinski LC, Zuckerman KS . Transforming growth factor β inhibits growth of more differentiated myeloid leukemia cells and retinoblastoma protein phosphorylation at serine 795 Exp Hematol 1999 27: 605–614

    Article  CAS  Google Scholar 

  41. Kohn KW . Principles and practice of DNA filter elution Pharmacol Ther 1991 49: 55–77

    Article  Google Scholar 

  42. Drexler HG, Quentenmeier H . Thrombopoietin: expression of its receptor MPL and proliferative effects on leukemic cells Leukemia 1996 10: 1405–1421

    CAS  PubMed  Google Scholar 

  43. Koeffler HP, Billing R, Lusis AJ, Sparkes R, Golde DW . An undifferentiated variant derived from the human acute myelogenous leukemia cell line (KG-1) Blood 1980 56: 265–273

    CAS  PubMed  Google Scholar 

  44. Van Ranst PC, Snoeck HW, Lardon F, Lenjou M, Nijs G, Weekx SF, Rodrigus I, Berneman ZN, Van Bockstaele DR . TGF-beta and MIP-1 alpha exert their main inhibitory activity on very primitive CD34+2CD38 cells, but show opposite effects on more mature CD34+CD38+ human hematopoietic progenitors Exp Hematol 1996 24: 1509–1515

    CAS  PubMed  Google Scholar 

  45. Baech J, Johnsen HE . Technical aspects and clinical impact of hematopoietic progenitor subset quantification Stem Cells 2000 18: 76–86

    Article  CAS  Google Scholar 

  46. Goodell MA, Rosenzweig M, Kim H, Marks DF, DeMaria M, Paradis G, Grupp SA, Sieff CA, Mulligan RC . Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species Nat Med 1991 3: 1337–1345

    Article  Google Scholar 

  47. Dickson MC, Martin JS, Cousns FM, Kulkarni AB, Karlsson S, Akhurst RJ . Defective haematopoiesis and vasculogenesis in transforming growth factor-beta 1 knock out mice Development 1995 121: 1845–1854

    CAS  PubMed  Google Scholar 

  48. Melotti P, Calabretta B . Ets-2 and c-Myb act independently in regulating expression of the hematopoietic stem cell antigen CD34 J Biol Chem 1994 269: 25303–25309

    CAS  PubMed  Google Scholar 

  49. Melotti P, Ku DH, Calabretta B . Regulation of the expression of the hematopoietic stem cell antigen CD34: role of c-myb J Exp Med 1994 179: 1023–1028

    Article  CAS  Google Scholar 

  50. Krause DS, Mucenski ML, Lawler AM, May SW . CD34 expression by embryonic hematopoietic and endothelial cells does not require c-Myb Exp Hematol 1998 26: 1086–1092

    CAS  PubMed  Google Scholar 

  51. Murohashi I, Endo T, Nishida S, Yoshida S, Jinnai I, Bessho M, Hirashima K . Differential effects of TGF-beta 1 on normal and leukemic human hematopoietic cell proliferation Exp Hematol 1995 23: 970–977

    CAS  PubMed  Google Scholar 

  52. Bloch A, Liu X-M, Wang LG . Regulation of c-myb expression in ML-1 human myeloblastic leukemia cells by c-ets-1 protein Adv Enzyme Regul 1995 35: 35–41

    Article  CAS  Google Scholar 

  53. Massagué J, Wotton D . Transcriptional control by the TGF-β/Smad signaling system EMBO J 2000 19: 1745–1754

    Article  Google Scholar 

  54. Attisano L, Wrana JL . Mads and Smads in TGF-β signalling Curr Opin Cell Biol 1998 10: 188–194

    Article  CAS  Google Scholar 

  55. Derynck R, Zhang Y, Feng X-H . Smads: transcriptional activators of TGF-β responses Cell 1998 95: 737–740

    Article  CAS  Google Scholar 

  56. Hanafusa H, Ninomiya-Tsushi J, Masuyama N, Nishita M, Fujisawa J, Shibuya H, Matsumoto K, Nishida E . Involvement of the p38 mitogen-activated protein kinase pathway in transforming growth factor-β-induced gene expression J Biol Chem 1999 274: 27161–27167

    Article  CAS  Google Scholar 

  57. Moriguchi T, Kyruyanagi N, Yamaguchi K, Gotoh Y, Irie K, Kano T, Shorakave K, Muro Y, Shibuya H, Matsumoto K, Nishida E, Hagiwara M . A novel kinase cascade mediated by mitogen-activated protein kinase kinase 6 and MKK3 J Biol Chem 1996 271: 26981–26988

    Article  CAS  Google Scholar 

  58. Nebreda AR, Porras A . p38 MAP kinases: beyond the stress response TIBS 2000 25: 257–260

    CAS  PubMed  Google Scholar 

  59. Martin-Bianco E . p38 MAPK signaling cascades: ancient roles and new functions Bioessays 2000 22: 637–645

    Article  Google Scholar 

  60. Adachi-Yamada T, Nakamura M, Tomoyasu Y, Sano Y, Mori E, Goto S, Ueno N, Nishida N, Matsumoto K . p38 mitogen-activated protein kinase can be involved in transforming growth factor beta superfamily signal transduction in Drosophila wing morphogenesis Mol Cell Biol 1999 19: 2322–2329

    Article  CAS  Google Scholar 

  61. Nagata Y, Takahashi N, Davis RJ, Todokoro K . Activation of p38 MAP kinase and JNK but not ERK is required for erythropoietin-induced erythroid differentiation Blood 1998 92: 1859–1869

    CAS  PubMed  Google Scholar 

  62. Nagata Y, Moriguchi T, Nishida E, Todokoro K . Activation of p38 MAP kinase pathway by erythropoietin and interleukin-3 Blood 1997 90: 929–934

    CAS  PubMed  Google Scholar 

  63. Kucich U, Rosenbloom JC, Shen G, Abrams WR, Hamilton AD, Sebti SM, Rosenbloom J . TGF-beta1 stimulation of fibronectin transcription in cultured human lung fibroblasts requires active geranylgeranyl transferase I, phosphatidylcholine-specific phospholipase C, protein kinase C-delta, and p38, but not erk1/erk2 Arch Biochem Biophys 2000 374: 313–324

    Article  CAS  Google Scholar 

  64. Ravanti L, Hakkinen L, Larjava H, Saarialho-Kere U, Foschi M, Han J, Kahari VM . Transforming growth factor-beta induces collagenase-3 expression by human gingival fibroblasts via p38 mitogen-activated protein kinase J Biol Chem 1999 274: 37292–37300

    Article  CAS  Google Scholar 

  65. Sano Y, Harada J, Tashiro S, Gotoh-Madeville R, Maekawa T, Ishii S . ATF-2 is a common nuclear target of Smad and TAK1 pathways in transforming growth factor-signaling J Biol Chem 1999 274: 8949–8957

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marone, M., Scambia, G., Bonanno, G. et al. Transforming growth factor-β1 transcriptionally activates CD34 and prevents induced differentiation of TF-1 cells in the absence of any cell-cycle effects. Leukemia 16, 94–105 (2002). https://doi.org/10.1038/sj.leu.2402334

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402334

Keywords

This article is cited by

Search

Quick links