Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Endothelial biology and idiopathic myelofibrosis

Elevated vascular endothelial growth factor (VEGF) serum levels in idiopathic myelofibrosis

Abstract

An increase of angiogenesis has been shown in idiopatic myelofibrosis with myeloid metaplasia (MMM) by microvessel density count method but evaluation of circulating angiogenic factors is still incomplete. In 31 patients affected by MMM and in 12 healthy subjects we evaluated the serum levels of VEGF (vascular endothelial growth factor) and correlated VEGF with clinical and laboratory features of disease. We found that MMM patients had circulating VEGF concentrations much higher than controls (median 1208 ng/ml vs 138 ng/ml, P < 0.0001). No correlation was found between VEGF and Hb, WBC, PLT, LDH, creatinine, bone marrow cellularity, fibrosis, splenomegaly, hepatomegaly, and therapy. However, in the subgroup of patients with a normal or low VEGF concentration, a direct correlation between VEGF and platelet count (r = 0.90, P = 0.002) was detected. Moreover, patients with a platelet count <300 × 109/l had VEGF serum levels lower than patients with a higher PLT count (median VEGF 864 vs 1557 pg/ml, P = 0.001). In six patients and in eight controls we also had the opportunity to measure VEGF in the plasma and we calculated that VEGF concentration was much higher in platelet-rich than in platelet-poor plasma and that platetets of MMM patients contained four times more VEGF than those of healthy controls. These results indicate that VEGF is overproduced in MMM, thus confirming an increased angiogenic activity. Platelets are probably a major source of VEGF in MMM but not the only one.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Ferrara N, Davis-Smyth T . Biology of vascular endothelial growth factor Endocr Rev 1997 18: 4–25

    Article  CAS  PubMed  Google Scholar 

  2. Kraft A, Weindel K, Ochs A, Marth C, Zmija J, Schumacher P, Unger C, Marmè D, Gastl G . Vascular endothelial growth factor in the sera and effusions of patients with malignant and nonmalignant disease Cancer 1999 85: 178–187

    Article  CAS  PubMed  Google Scholar 

  3. Ratajczak MZ, Ratajczak J, Machalinski B, Majka M, Marlicz W, Carter A, Pietrzkowski Z, Gewirtz AM . Role of vascular endothelial growth factor (VEGF) and placenta-derived growth factor (P1GF) in regulating human haemopoietic cell growth Br J Haematol 1998 103: 969–979

    Article  CAS  PubMed  Google Scholar 

  4. Vacca A, Ribatti D, Presta M, Monischetti M, Iurlaro M, Ria R, Albini A, Bussolino F, Dammacco F . Bone marrow neovascularization, plasma cell angiogenic potential, and matrix metalloproteinase-2 secretion parallel progression of human multiple myeloma Blood 1999 93: 3064–3073

    CAS  PubMed  Google Scholar 

  5. Weidner N, Folkman J . Tumor vascularity as a prognostic factor in cancer. In: De Vita VT, Hellman S, Rosenberg SA (eds) Important Advances in Oncology Lippincott-Raven: Philadelphia 1996 167–190

    Google Scholar 

  6. Aguayo A, Estey E, Kantarjian H, Mansouri T, Gidel C, Keating M, Giles F, Estrov Z, Barlogie B, Albitar M . Cellular vascular endothelial growth factor is a predictor of outcome in patients with acute myeloid leukemia Blood 1999 94: 3717–3721

    CAS  PubMed  Google Scholar 

  7. Vermeulen PB, Gasparini G, Fox SB, Toi M, Martin L, McCulloch P, Pezzella F, Viale G, Weidner S, Harris AL, Dirix LY . Quantification of angiogenesis in solid human tumors: an international consensus on the methodology and criteria of evaluation Eur J Cancer 1996 32A: 2474–2484

    Article  CAS  PubMed  Google Scholar 

  8. Risau W . Mechanisms of angiogenesis Nature 1997 386: 671–674

    Article  CAS  PubMed  Google Scholar 

  9. Kim J . Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumor growth in vitro Nature 1993 362: 841–844

    Article  CAS  PubMed  Google Scholar 

  10. Dirix LY, Vermeulen PB, Pawinski A, Prove A, Benoy I, De Pooter C, Martin M, Van Oosterom AT . Elevated levels of the angiogenic cytokines basic fibroblastic growth factor and vascular endothelia growth factor in sera of cancer patients Br J Cancer 1997 76: 238–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Salven P, Teerenhovi L, Joensuu H . A high pretreatment serum vascular endothelial growth factor concentration is associated with poor outcome in non-Hodgkin's lymphoma Blood 1997 90: 3167–3172

    CAS  PubMed  Google Scholar 

  12. Perez-Atayde AR, Sallan SE, Tedrow U, Connors S, Allred E, Folkman J . Spectrum of tumor angiogenesis in the bone marrow of children with acute lymphoblastic leukemia Am J Pathol 1997 150: 815–821

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Aguayo A, Kantarjian H, Estey E, Cortes J, Beran M, O'Brien S, Keating M, Freireich E, Thomas D, Rogers A, Albitar M . Plasma levels of VEGF and bFGF in various leukemias and their correlation with angiogenesis Blood 1999 94 (Suppl. 1): 503a, (Abstr. 2252)

    Google Scholar 

  14. Bellamy WT, Richter L, Frutiger Y, Sirjani D, Glinsmann-Gibson B, Grogan TM, List AF . Vascular endothelial growth factor (VEGF) is an autocrine promoter of ALIP and leukemia progenitor formation in myelodysplastic syndromes (MDS) Blood 1999 94 (Suppl. 1): 389a, (Abstr. 1727)

    Google Scholar 

  15. Mattern J, Koomagi R, Volm M . Association of vascular endothelial growth factor expression with intratumoral microvessel density and tumor cell proliferation in human epidermoid lung carcinoma Br J Cancer 1996 73: 931–934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Thiele J, Rompcik V, Wagner S, Fisher R . Vascular architecture and collagen type IV in primary myelofibrosis and polycythaemia vera: an immunomorphometric study on trephine biopsies of the bone marrow Br J Haematol 1992 80: 227–234

    Article  CAS  PubMed  Google Scholar 

  17. Lundberg LG, Lerner R, Sundelin P, Rogers R, Folkman J, Palmblad J . Bone marrow in polycythemia vera, chronic myelocytic leukemia, and myelofibrosis has an increased vascularity Am J Pathol 2000 157: 15–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tefferi A . Myelofibrosis with myeloid metaplasia N Engl J Med 2000 342: 1255–1265

    Article  CAS  PubMed  Google Scholar 

  19. Mesa RA, Hanson CA, Rajkumar SV, Schroeder GS, Tefferi A . Evaluation and clinical correlations of microvessel density in myelofibrosis with myeloid metaplasia Blood 2000 96: 3374–3380

    CAS  PubMed  Google Scholar 

  20. Dalley A, Smith JM, Reilly JT, MacNeil S . Investigation of calmodulin and basic fibroblast growth factor (bFGF) in idiopathic myelofibrosis: evidence for a role of extracellular calodulin in fibroblast proliferation Br J Haematol 1996 93: 856–862

    Article  CAS  PubMed  Google Scholar 

  21. Le Bousse-Kerdiles M-C, Chevillard S, Charpentier A, Romquin N, Clay D, Smadja-Joffe F, Praloran V, Dupriez B, Demory J-L, Jasmin C, Martirè M-C . Differential expression of transforming growth factor-β, basic fibroblast growth factor, and their receptors in CD34+ hematopoietic progenitor cells from patients with myelofibrosis and myeloid metaplasia Blood 1996 88: 4534–4546

    CAS  PubMed  Google Scholar 

  22. Martirè M-C, Le Bousse-Kerdiles M-C, Romquin N, Chevillard S, Praloran V, Demory J-L, Dupriez B . Elevated levels of basic fibroblast grwoth factor in megakaryocyts and platelets from patients with idiopathic myeofibrosis Br J Haematol 1997 97: 441–448

    Article  Google Scholar 

  23. Salven P, Oprana A, Joensuu H . Leukocyte and platelets of patients with cancer contain high levels of vascular endothelial growth factor Clin Cancer Res 1999 5: 487–491

    CAS  PubMed  Google Scholar 

  24. Wynendaele W, Derua R, Hoylaerts MF, Pawinski A, Waelkens E, de Bruijn EA, Paridaens R, Merlevede W, van Oosterom AT . Vascular endothelial growth factor measured in platelet poor plasma allows optimal separation between cancer patients and volunteers: a key to study an angiogenic marker in vivo? Ann Oncol 1999 10: 965–971

    Article  CAS  PubMed  Google Scholar 

  25. Goldberg MA, Schneider TJ . Similarities between the oxygen-sensing mechanisms regulating the expression of vascular endothelial growth factor and erythropoietin J Biol Chem 1994 269: 4355–4361

    CAS  PubMed  Google Scholar 

  26. Banks RE, Forbes MA, Kinsey SE, Stanley A, Ingham E, Walters C, Selby PJ . Release of the angiogenic cytokine vascular endothelial growth factor (VEGF) from platelets: significance for VEGF measurements and cancer biology Br J Cancer 1998 76: 956–964

    Article  Google Scholar 

  27. Salgado R, Vermeulen PB, Benoy I, Weytjiens R, Huget P, Van Mark E, Dirix LY . Platelet number and interleukin-6 correlate with VEGF but not with bFGF serum levels of advanced cancer patients Br J Cancer 1999 80: 892–897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Verheulen HMW, Hoekman K, Luykx-de Bakker S, Eekman CA, Folman CC, Broxtermann HJ, Pinedo HM . Platelet: transporter of vascular endothelial growth factor Clin Cancer Res 1997 3: 2187–2190

    Google Scholar 

  29. Katoh O, Tauchi H, Kawaishi K, Kimura A, Satow Y . Expression of the vascular endothelial growth factor (VEGF) receptor gene, KDR, in hematopoietic cells and inhibitory effet of VEGF on apoptotic cell death caused by ionizing radiation Cancer Res 1995 55: 5687–5692

    CAS  PubMed  Google Scholar 

  30. Mohle R, Green D, Moore MA, Nachman RL, Rafii S . Constitutive production and thrombin-induced release of vascular endothelial growth factor by human megakaryocytes and platelets Proc Nat Acad Sci USA 1997 94: 663–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Huang Y-Q, Li J-J, Hu L, Karpatkin S . Thrombin induces vascular endothelial cell growth factor (VEGF) in human tumor cells and fibroblasts Blood 1999 94 (Suppl. 1): 12a, (Abstr. 40)

    Google Scholar 

  32. Ziegler BL, Valtieri M, Almeida Porada G, De Maria R, Muller R, Masella B, Gabbianelli M, Casella I, Pelosi E, Bock T, Zanjani ED, Peschle C . KDR receptor: a key marker defining hematopoietic stem cells Science 1999 285: 1553–1558

    Article  CAS  PubMed  Google Scholar 

  33. Barosi G . Myelofibrosis with myeloid metaplasia: diagnostic definition and prognostic classification for clinical studies and treatment guidelines J Clin Oncol 1999 17: 2954–2970

    Article  CAS  PubMed  Google Scholar 

  34. Thomas DA, Aguayo A, Giles FJ, Albitar M, O'Brien S, Cortes J, Faderl S, Bivins C, Zeldis J, Keating MJ, Barlogie B, Kantarjian MJ . Thalidomide anti-angiogenesis therapy (RX) in Philadelphia (Ph)-negative myeloproliferative disorders (MPD) and myelofibrosis (MF) Blood 1999 94 (Suppl. 1): 702a, (Abstr. 3102)

    Google Scholar 

Download references

Acknowledgements

This study was supported in part by FON.CA.NE.SA. (Fondazione Catanese per lo Studio e la Cura delle Malattie Neoplastiche del Sangue).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raimondo, F., Azzaro, M., Palumbo, G. et al. Elevated vascular endothelial growth factor (VEGF) serum levels in idiopathic myelofibrosis. Leukemia 15, 976–980 (2001). https://doi.org/10.1038/sj.leu.2402124

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402124

Keywords

This article is cited by

Search

Quick links