Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Molecular Cytogenetics

Erythroid defects and increased retrovirally-induced tumor formation in Evi1 transgenic mice

Abstract

Aberrant expression of the Evi1 (ecotropic virus integration site 1) proto-oncogene has been associated with hematopoietic malignancies in both mice and man. To determine the effect of enforced expression of Evi1 in vivo, we developed a transgenic mouse model utilizing the murine Sca-1 (Ly-6E.1) promoter. Here, we describe the generation and analysis of three independent lines of Evi1 transgenic mice. Transgenic animals of two founder lines developed normally. These mice did not show any obvious hematological abnormalities but showed a significant reduction in the number of bone marrow colony-forming unit erythroid (CFU-E)-derived colonies. This implies a defect of normal erythroid hematopoiesis affecting relatively late erythroid progenitor cells. We also show that when newborn Evi1 transgenic mice of these two lines were infected with Cas-Br-M MuLV, tumor incidence was greatly enhanced in comparison with nontransgenic littermates, indicating an increased susceptibility for leukemia development. Interestingly, analysis of a third founder line revealed that all male progeny consistently displayed severely impaired erythropoiesis with major defects in the bone marrow, spleen and peripheral blood. Taken together, our results present the first evidence of Evi1 disturbing normal erythropoiesis in vivo and provides evidence for cooperative potential of Evi1 in tumor progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Morishita K, Parker DS, Mucenski ML, Jenkins NA, Copeland NG, Ihle JN . Retroviactivation of a novel gene encoding a zinc finger protein in IL-3-dependent myeloid leukemia cell lines Cell 1988 54: 831–840

    Article  CAS  PubMed  Google Scholar 

  2. Fichelson S, Dreyfus F, Berger R, Melle J, Bastard C, Miclea JM, Gisselbrecht S . Evi-1 expression in leukemic patients with rearrangements of the 3q25-q28 chromosomal region Leukemia 1992 6: 93–99

    CAS  PubMed  Google Scholar 

  3. Morishita K, Parganas E, William CL, Whittaker MH, Drabkin H, Oval J, Taetle R, Valentine MB, Ihle JN . Activation of EVI1 gene expression in human acute myelogenous leukemias by translocations spanning 300–400 kilobases on chromosome band 3q26 Proc Natl Acad Sci USA 1992 89: 3937–3941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Suzukawa K, Parganas E, Gajjar A, Abe T, Takahashi S, Tani K, Asano S, Asou H, Kamada N, Yokota J . Identification of a breakpoint cluster region 3′ of the ribophorin I gene at 3q21 associated with the transcriptional activation of the EVI1 gene in acute myelogenous leukemias with inv(3)(q21q26) Blood 1994 84: 2681–2688

    CAS  PubMed  Google Scholar 

  5. Jenkins RB, Tefferi A, Solberg LA Jr, Dewald GW . Acute leukemia with abnormal thrombopoiesis and inversions of chromosome 3 Cancer Genet Cytogenet 1989 39: 167–179

    Article  CAS  PubMed  Google Scholar 

  6. Morishita K, Parganas E, Bartholomew C, Sacchi N, Valentine MB, Raimondi SC, Le Beau MM, Ihle JN . The human Evi-1 gene is located on chromosome 3q24-q28 but is not rearranged in three cases of acute nonlymphocytic leukemias containing t(3;5)(q25;q34) translocations Oncogene Res 1990 5: 221–231

    CAS  PubMed  Google Scholar 

  7. Russell M, List A, Greenberg P, Woodward S, Glinsmann B, Parganas E, Ihle J, Taetle R . Expression of EVI1 in myelodysplastic syndromes and other hematologic malignancies without 3q26 translocations Blood 1994 84: 1243–1248

    CAS  PubMed  Google Scholar 

  8. Ogawa S, Kurokawa M, Tanaka T, Tanaka K, Hangaishi A, Mitani K, Kamada N, Yazaki Y, Hirai H . Increased Evi-1 expression is frequently observed in blastic crisis of chronic myelocytic leukemia Leukemia 1996 10: 788–794

    CAS  PubMed  Google Scholar 

  9. Carapeti M, Goldman JM, Cross NC . Overexpression of EVI-1 in blast crisis of chronic myeloid leukemia (letter) Leukemia 1996 10: 1561

    CAS  PubMed  Google Scholar 

  10. Delwel R, Funabiki T, Kreider BL, Morishita K, Ihle JN . Four of the seven zinc fingers of the Evi-1 myeloid-transforming gene are required for sequence-specific binding to GA(C/T)AAGA(T/C)AAGATAA Mol Cell Biol 1993 13: 4291–4300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Perkins AS, Fishel R, Jenkins NA, Copeland NG . Evi-1, a murine zinc finger proto-oncogene, encodes a sequence-specific DNA-binding protein Mol Cell Biol 1991 11: 2665–2674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wall L, deBoer E, Grosveld F . The human beta-globin gene 3′ enhancer contains multiple binding sites for an erythroid-specific protein Genes Dev 1988 2: 1089–1100

    Article  CAS  PubMed  Google Scholar 

  13. Evans T, Reitman M, Felsenfeld G . An erythrocyte-specific DNA-binding factor recognizes a regulatory sequence common to all chicken globin genes Proc Natl Acad Sci USA 1988 85: 5976–5980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Weiss MJ, Orkin SH . GATA transcription factors: key regulators of hematopoiesis Exp Hematol 1995 23: 99–107

    CAS  PubMed  Google Scholar 

  15. Kreider BL, Orkin SH, Ihle JN . Loss of erythropoietin responsiveness in erythroid progenitors due to expression of the Evi-1 myeloid-transforming gene Proc Natl Acad Sci USA 1993 90: 6454–6458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Morishita K, Parganas E, Matsugi T, Ihle JN . Expression of the Evi-1 zinc finger gene in 32Dc13 myeloid cells blocks granulocytic differentiation in response to granulocyte colony-stimulating factor Mol Cell Biol 1992 12: 183–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tanaka T, Nishida J, Mitani K, Ogawa S, Yazaki Y, Hirai H . Evi-1 raises AP-1 activity and stimulates c-fos promoter transactivation with dependence on the second zinc finger domain J Biol Chem 1994 269: 24020–24026

    CAS  PubMed  Google Scholar 

  18. Morishita K, Suzukawa K, Taki T, Ihle JN, Yokota J . EVI-1 zinc finger protein works as a transcriptional activator via binding to a consensus sequence of GACAAGATAAGATAAN1-28 CTCATCTTC Oncogene 1995 10: 1961–1967

    CAS  PubMed  Google Scholar 

  19. Lopingco MC, Perkins AS . Molecular analysis of Evi1, a zinc finger oncogene involved in myeloid leukemia Curr Top Microbiol Immunol 1996 211: 211–222

    CAS  PubMed  Google Scholar 

  20. Soderholm J, Kobayashi H, Mathieu C, Rowley JD, Nucifora G . The leukemia-associated gene MDS1/EVI1 is a new type of GATA-binding transactivator Leukemia 1997 11: 352–358

    Article  CAS  PubMed  Google Scholar 

  21. Bartholomew C, Kilbey A, Clark AM, Walker M . The Evi-1 proto-oncogene encodes a transcriptional repressor activity associated with transformation Oncogene 1997 14: 569–577

    Article  CAS  PubMed  Google Scholar 

  22. Kurokawa M, Mitani K, Irie K, Matsuyama T, Takahashi T, Chiba S, Yazaki Y, Matsumoto K, Hirai H . The oncoprotein Evi-1 represses TGF-beta signalling by inhibiting Smad3 Nature 1998 394: 92–96

    Article  CAS  PubMed  Google Scholar 

  23. Kurokawa M, Mitani K, Imai Y, Ogawa S, Yazaki Y, Hirai H . The t(3;21) fusion product, AML1/Evi-1, interacts with Smad3 and blocks transforming growth factor-beta-mediated growth inhibition of myeloid cells Blood 1998 92: 4003–4012

    CAS  PubMed  Google Scholar 

  24. Sinclair AM, Dzierzak EA . Cloning of the complete Ly-6E.1 gene and identification of DNase I hypersensitive sites corresponding to expression in hematopoietic cells Blood 1993 82: 3052–3062

    CAS  PubMed  Google Scholar 

  25. Miles C, Sanchez MJ, Sinclair A, Dzierzak E . Expression of the Ly-6E.1 (Sca-1) transgene in adult hematopoietic stem cells and the developing mouse embryo Development 1997 124: 537–547

    CAS  PubMed  Google Scholar 

  26. van Lohuizen M, Verbeek S, Krimpenfort P, Domen J, Saris C, Radaszkiewicz T, Berns A . Predisposition to lymphomagenesis in pim-1 transgenic mice: cooperation with c-myc and N-myc in murine leukemia virus-induced tumors Cell 1989 56: 673–682

    Article  CAS  PubMed  Google Scholar 

  27. Haupt Y, Alexander WS, Barri G, Klinken SP, Adams JM . Novel zinc finger gene implicated as myc collaborator by retrovirally accelerated lymphomagenesis in E mu-myc transgenic mice (see comments) Cell 1991 65: 753–763

    Article  CAS  PubMed  Google Scholar 

  28. Haupt Y, Harris AW, Adams JM . Retroviral infection accelerates T lymphomagenesis in E mu-N-ras transgenic mice by activating c-myc or N-myc Oncogene 1992 7: 981–986

    CAS  PubMed  Google Scholar 

  29. Hogan B BR, Costantini F, Lacy E . Manipulating the Mouse Embryo, A Laboratory Manual (edn 2) Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY 1994

    Google Scholar 

  30. Sambrook J, Fritsch FE, Maniatis T . Molecular Cloning, A Laboratory Manual (edn 2) Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY 1989

    Google Scholar 

  31. Jenkins JR, Ayton P, Jones T, Davies SL, Simmons DL, Harris AL, Sheer D, Hickson ID . Isolation of cDNA clones encoding the beta isozyme of human DNA topoisomerase II and localisation of the gene to chromosome 3p24 Nucleic Acids Res 1992 20: 5587–5592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Holmes KL, Palaszynski E, Fredrickson TN, Morse HCd, Ihle JN . Correlation of cell-surface phenotype with the establishment of interleukin 3-dependent cell lines from wild-mouse murine leukemia virus-induced neoplasms Proc Natl Acad Sci USA 1985 82: 6687–6691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kimura S, Tada N, Liu-Lam Y, Hammerling U . Studies of the mouse Ly-6 alloantigen system. II. Complexities of the Ly-6 region Immunogenetics 1984 20: 47–56

    Article  CAS  PubMed  Google Scholar 

  34. Spangrude GJ, Aihara Y, Weissman IL, Klein J . The stem cell antigens Sca-1 and Sca-2 subdivide thymic and peripheral T lymphocytes into unique subsets J Immunol 1988 141: 3697–3707

    CAS  PubMed  Google Scholar 

  35. van de Rijn M, Heimfeld S, Spangrude GJ, Weissman IL . Mouse hematopoietic stem-cell antigen Sca-1 is a member of the Ly-6 antigen family Proc Natl Acad Sci USA 1989 86: 4634–4638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dreyfus F, Bouscary D, Melle J, Ribrag V, Guesnu M, Varet B . Expression of the Evi-1 gene in myelodysplastic syndromes Leukemia 1995 9: 203–205

    CAS  PubMed  Google Scholar 

  37. Schnittger S, Schoch C, Streubel B, Hinrichs HF, Otremba B, Parwaresch R, Fonatsch C . A case of atypical myelodysplastic syndrome with micromegakaryocytes, normal platelet count, and t(3;12)(q21;p13) with inv(3)(q21q26) Genes Chromosomes Cancer 1997 20: 292–298

    Article  CAS  PubMed  Google Scholar 

  38. Kouides PA, Bennett JM . Morphology and classification of myelodysplastic syndromes Hematol Oncol Clin North Am 1992 6: 485–499

    Article  CAS  PubMed  Google Scholar 

  39. Shivdasani RA, Orkin SH . The transcriptional control of hematopoiesis (see comments) Blood 1996 87: 4025–4039

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Elaine Dzierzak for providing the Sca-1 (Ly-6E.1) cassette (pL6Cla), Dr Nico de Both for histopathological analysis, Dr Rosalyn Slater and Bep Smit for FISH analysis, Trudi Visser for technical assistance on colony cultures and Karola van Rooyen for preparation of figures. This work was supported by the Dutch Cancer Society (KWF), the Netherlands Organization for Scientific Research (NWO) and the Royal Dutch Academy of Sciences (KNAW).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Louz, D., van den Broek, M., Verbakel, S. et al. Erythroid defects and increased retrovirally-induced tumor formation in Evi1 transgenic mice. Leukemia 14, 1876–1884 (2000). https://doi.org/10.1038/sj.leu.2401887

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2401887

Keywords

This article is cited by

Search

Quick links