Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Method for determination of acephate, methamidophos, omethoate, dimethoate, ethylenethiourea and propylenethiourea in human urine using high-performance liquid chromatography-atmospheric pressure chemical ionization tandem mass spectrometry

Abstract

Because of increasing concern about widespread use of insecticides and fungicides, we have developed a highly sensitive analytical method to quantify urine-specific urinary biomarkers of the organophosphorus pesticides acephate, methamidophos, omethoate, dimethoate, and two metabolites from the fungicides alkylenebis-(dithiocarbamate) family: ethylenethiourea and propylenethiourea. The general sample preparation included lyophilization of the urine samples followed by extraction with dichloromethane. The analytical separation was performed by high-performance liquid chromatography (HPLC), and detection by a triple quadrupole mass spectrometer with and atmospheric pressure chemical ionization source in positive ion mode using multiple reaction monitoring and tandem mass spectrometry (MS/MS) analysis. Two different Thermo-Finnigan (San Jose, CA, USA) triple quadrupole mass spectrometers, a TSQ 7000 and a TSQ Quantum Ultra, were used in these analyses; results are presented comparing the method specifications of these two instruments. Isotopically labeled internal standards were used for three of the analytes. The use of labeled internal standards in combination with HPLC-MS/MS provided a high degree of selectivity and precision. Repeated analysis of urine samples spiked with high, medium and low concentration of the analytes gave relative standard deviations of less than 18%. For all compounds the extraction efficiency ranged between 52% and 63%, relative recoveries were about 100%, and the limits of detection were in the range of 0.001–0.282 ng/ml.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Agüera A., Contreras M., Crespo J., and Fernandez-Alba A.R. Multiresidue method for the analysis of multiclass pesticides in agricultural products by gas chromatography-tandem mass spectrometry. Analyst 2002: 127: 347–354.

    Article  Google Scholar 

  • Anastassiades M., and Lehotay S. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticides residues in produce. J AOAC Int 2003: 86: 412–431.

    CAS  PubMed  Google Scholar 

  • Aprea C., Colosio C., Mammone T., Minoia C., and Maroni M. Biological monitoring of pesticides exposure: a review of analytical methods. J Chromatogr B 2002: 769: 191–219.

    Article  CAS  Google Scholar 

  • Aprea C, Sciarra G, and Sartorelli P Environmental and biological monitoring of exposure to mancozeb, ethylenethiourea, and dimethoate during industrial formulation. J Toxicol Environ Health 1998: 53: 263–281.

    Article  CAS  Google Scholar 

  • Baker S.E., Olsson AO Needham L.L., and Barr D.B. High-performance liquid chromatography-tandem mass spectrometry method for quantifying sulfonylurea herbicides in human urine: reconsidering the validation process. Anal Bioanal Chem 2005: 383: 963–976.

    Article  CAS  Google Scholar 

  • Barr D., and Needham L.L. Analytical methods for biological monitoring of exposure to pesticides: a review. J Chromatogr B 2002: 778: 5–29.

    Article  CAS  Google Scholar 

  • Barr D.B., Barr J.R., Maggio V.L., Whitehead Jr. D., Sadowski M., Whyatt R., and Needham L.L. A multi-analyte method for the quantification of comtemporary pesticides in human serum and plasma using high-resolution mass spectrometry. J Chromatogr B 2002: 778: 99–111.

    Article  CAS  Google Scholar 

  • Blasco C., Font G., and Pic Y. Determination of dithiocarbamates and metabolites in plants by liquid chromatography-mass spectrometry. J Chromatgr A 2004: 1028: 267–276.

    Article  CAS  Google Scholar 

  • Bravo R., Caltabiano L.M., Weerasekera G., Whitehead R.D., Fernandez C., Needham L.L., Bradman A., and Barr D.B. Measurement of dialkyl phosphate metabolite of organophosphorus pestcides in human urine using lyophilization with gas chromatography-tandem mass spectrometry and isotope dilution quantification. J Exp Anal Environ Epidemiol 2004: 14: 249–259.

    Article  CAS  Google Scholar 

  • Cocker J., Mason H.J., Garfitt S.J., and Jones K. Biological monitoring of exposure to organophosphate pesticides. Toxicol Lett 2002: 134: 97–103.

    Article  CAS  Google Scholar 

  • Colosio C., Fustinoni S., Birindelli S., Bonomi I., De Paschale G., Mammone T., Tiramani M., Vercelli F., Visentin S., and Maroni M. Ethylenethiurea in urine as an indicator of exposure to macozeb in vineyard workers. Toxicol Lett 2002: 134: 133–140.

    Article  CAS  Google Scholar 

  • De Niro A., Santelli F., Servidio N., Sindona G., and Tagarelli A. Identification and assay of organophosphates in organic oranges by gas chromatography with pulsed flame photometric detection and ion-trap mass spectrometry. J AOAC Int 2003: 86: 1003–1007.

    Google Scholar 

  • Dearfield K.L. Ethylene thiourea (ETU). A review of the genetic toxicity studies. Mutat Res 1994: 317: 111–132.

    Article  CAS  Google Scholar 

  • Debbarh I., and Moore N. A simple method for determination of ethylene-thiourea (ETU) in biological samples. J Anal Toxicol 2002: 26: 216–221.

    Article  CAS  Google Scholar 

  • Delgado E., McConnell R., Miranda J., Keifer M., Lundberg I., Partanen T., and Wesseling C. Central nervous system effects of acute organophosphate poisoning in two-year follow-up. Scand J Work Environ Health 2004: 30: 362–370.

    Article  Google Scholar 

  • Doerge D.R., and Takazawa R.S. Mechanism of thyroid peroxidase inhibition by ethylenethiourea. Chem. Res. Toxicol 1990: 3: 98–101.

    Article  CAS  Google Scholar 

  • Eddleston M., Eyer P., Worek F., Mohamed F., Senarathna L., von Meyer L., Juszczak E., Hittarage A., Azhar S., and Dissanayake W. Differences between organophosphorus insecticides in human self-poisoning: a prospective cohort study. Lancet 2005: 366: 1452–1459.

    Article  CAS  Google Scholar 

  • Eskenazi B., Bradman A., and Castorina R. Exposures of children to organophosphate pesticides and their potential adverse health effects. Environ Health Perspect 1999: 107: 409–419.

    Article  CAS  Google Scholar 

  • Eskenazi B., Bradman A., Gladstone E.A., Jaramillo S., Birch K., and Holand N. CHAMACOS, a longitudinal birth cohort study: lessons from the field. Child Health 2003: 1: 3–27.

    Article  Google Scholar 

  • Ingelse B.A., van Dam R.C.J., Vreeken R.J., Mol H.G.J., and Steijger O.M. Determination of polar organophosphorus pestcides in aqueous samples by direct injection using liquid chromatography-tandem mass spectrometry. J Chromatogr A 2001: 918: 67–78.

    Article  CAS  Google Scholar 

  • Jaga K., and Dharmani C. Sources of exposure and public health implications of organophosphate pesticides. Rev Panam Salud Publica 2003: 14: 171–185.

    Article  Google Scholar 

  • Kamanyire R., and Karalliedde L. Organophosphate toxicity and occupational exposure. Occup Med 2004: 54: 69–75.

    Article  CAS  Google Scholar 

  • Khera K.S. Ethylenethioure: a review of teratogenicity and distribution studies and an assessment of reproduction risk. CRC Crit Rev Toxicol 1987: 18: 129–139.

    Article  CAS  Google Scholar 

  • Kontou S., Tsipi D., Oreopoulou V., and Tzia C. Determination of ETU in tomatoes and tomato products by HPLC-PDA. Evaluation of cleanup procedures. J Agric Food Chem 2001: 49: 1090–1097.

    Article  CAS  Google Scholar 

  • Kwong T.C. Organophosphate Pesticides: Biochemistry and Clinical Toxicology. Ter Drug Monit 2002: 24: 144–149.

    Article  CAS  Google Scholar 

  • Lehotay S.J. Determination of pesticide residues in nonfatty foods by supercritical fluid extraction and gas chromatography/mass spectrometry: collaborative study. J AOAC Int 2002: 85: 1148–1166.

    CAS  PubMed  Google Scholar 

  • Maroni M., Colocio C., Ferioli A., and Fait A. Biological monitoring of pesticides exposure: a review. Toxicology 2000: 143: 1–118.

    Article  CAS  Google Scholar 

  • Mason H.J., Sams C., Stevenson A.J., and Rawbone R. Rates of spontaneous reactivation and aging of acetylcholinesterase in human erythrocytes after inhibition by organophosphorus pesticides. Hum Exp Toxicol 2000: 19: 511–516.

    Article  CAS  Google Scholar 

  • Miranda J., McConnell R., Wesseling C., Cuadra R., Delgado E., Torres E., Keifer M., and Lundberg I. Muscular strength and vibration thresholds during two year after acute poisoning with organophosphate insecticides. Occup Environ Med 2004: 61: e4.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mol H.G.J., van Dam R.C.J., and Steijger O.M. Determination of polar organophosphorus pesticides in vegetables and fruits using liquid chromatography with tandem mass spectrometry:selection of extraction solvent. J Chromatogr A 2003: 1015: 119–127.

    Article  CAS  Google Scholar 

  • Olsson A.O., Nguyen J.V., Sadowski M.A., and Barr D.B. A liquid chromatography/electrospray ionization-tandem mass spectrometry method quantification of specific organophosphorus pesticide biomarkers in human urine. Anal Bioanal Chem 2003: 376: 808–815.

    Article  CAS  Google Scholar 

  • Perret D., Gentili A., Marchese S., Sergi M., and D'Ascenzo G. Validation of a method for determination of multiclass pesticide residues in fruit juices by liquid chromatography/tandem mass spectrometry after extraction by matrix solid-phase dispersion. J AOAC Int 2002: 85: 724–730.

    CAS  PubMed  Google Scholar 

  • Rissato S.R., Galhiane M.S., Apon B.M., and Arruda M.S.P. Multiresidue analysis of pesticides in soil by supercritical fluid extraction/gas chromatography with electron-capture detection and confirmation by gas chromatography-mass spectrometry. J Agric Food Chem 2005: 53: 62–69.

    Article  CAS  Google Scholar 

  • Salvi R.M., Lara D.R., Ghisolfi E.S., Portela L.V., Dias R.D., and Souza D.O. Neuropsychiatric evaluation in subjects chronically exposed to organophosphate pesticides. Toxicol Sci 2003: 72: 267–271.

    Article  CAS  Google Scholar 

  • Sottani C., Bettinelli M., Fiorentino M.L., and Minoia C. Analytical method for the quantitative determination of urinary ethylenethiourea by liquid chromatography/electrospray ionization tandem mass spectrometry. Rapid Commun Mass Spectrom 2003: 17: 2253–2259.

    Article  CAS  Google Scholar 

  • Taylor J.K. Quality Assurance of Chemical Measurements. Lewis Publishers: Boca Raton, 1987.

    Google Scholar 

  • Van Lishaut H., and Schwack W. Selective trace determination of dithiocarbamate fungicides in fruits and vegetables by reversed-phase ion-pair liquid chromatography with ultraviolet and electrochemical detection. J AOAC Int 2000: 83: 720–727.

    CAS  PubMed  Google Scholar 

  • Vettorazzi G., Almeida W.F., Burin G.J., Jaeger R.B., Puga F.R., Rahde A.F., Reyes G.J., and Schvartsman S. International safety assessment of pesticides: dithiocarbamate pesticides, ETU, and PTU — a Review and Update. Teratogenesis Carcinogen Mutagen 1995: 15: 313–337.

    Article  CAS  Google Scholar 

  • Westgard J.O. Basic QC Practices, Training in Statistical Quality Control for Health Care Laboratories, 2nd edn. Westgard QC, Madison, Available http://www.westgard.com/basicqcbook.htm, 2002 [accessed 10 June 2002].

    Google Scholar 

  • Wong J.W., Webster M.G., Halverson C.A., Hengel M.J., Ngim K.K., and Ebeler S.E. Multiresidue pesticides analysis in wines by solid-phase extraction and capillary chromatography-mass spectrometric detection with selective ion monitoring. J Agric Food Chem 2003: 51: 1148–1161.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Angela Montesano.

Additional information

The views expressed in this paper are those of the authors and do not necessarily reflect the views or policies of the Centers for Disease Control and Prevention. The authors state no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montesano, M., Olsson, A., Kuklenyik, P. et al. Method for determination of acephate, methamidophos, omethoate, dimethoate, ethylenethiourea and propylenethiourea in human urine using high-performance liquid chromatography-atmospheric pressure chemical ionization tandem mass spectrometry. J Expo Sci Environ Epidemiol 17, 321–330 (2007). https://doi.org/10.1038/sj.jes.7500550

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.jes.7500550

Keywords

This article is cited by

Search

Quick links