Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Paper
  • Published:

Acute effects of brain-derived neurotrophic factor on energy expenditure in obese diabetic mice

Abstract

OBJECTIVE: We recently demonstrated that chronic treatment with brain-derived neurotrophic factor (BDNF) regulates energy expenditure in obese diabetic C57BL/KsJ-db/db mice. In this study, we investigated the acute effects of BDNF on energy expenditure.

DESIGN: After BDNF was singly administered to male db/db mice (aged 10–12 weeks), their body temperature and whole body glucose oxidation were measured. Their norepinephrine (NE) turnover and uncoupling protein (UCP) 1 expression in interscapular brown adipose tissue (BAT) were also analyzed.

RESULTS: Even though the body temperatures of hyperphagic db/db mice dropped remarkably in a 24 h period after food deprivation, only a single subcutaneous administration of BDNF significantly prevented the reduction of body temperature. BDNF was also observed to have similar efficacy in cold exposure experiments at 15°C. Respiratory excretion of 14CO2 after intravenous injection of D-[14C(U)]-glucose was significantly increased by BDNF administration, indicating that BDNF increases whole-body glucose oxidation. BDNF administered intracerebroventricularly was also able to prevent the reduction of body temperature of db/db mice. To clarify the BDNF action mechanism we examined NE turnover in BAT. Four hours after a single administration, BDNF reduced NE content in the presence of the tyrosine hydroxylase inhibitor, α-methyl-P-tyrosine methyl ester, indicating enhanced NE turnover in BAT. BDNF also increased the expression of the UCP1 mRNA and protein in BAT.

CONCLUSION: These data indicate that BDNF rapidly regulates energy metabolism in obese diabetic animals, partly through activating the sympathetic nervous system and inducing UCP1 gene expression in BAT.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Lindsay RM, Wiegand SJ, Altar CA, DiStefano PS . Neurotrophic factors: from molecule to man Trends Neurosci 1994 17: 182–190.

    Article  CAS  Google Scholar 

  2. Skup MH . BDNF and NT-3 widen the scope of neurotrophin activity: pharmacological implications Acta Neurobiol Exp 1994 54: 81–94.

    CAS  Google Scholar 

  3. Barbacid M . Neurotrophic factors and their receptors Curr Opin Cell Biol 1995 7: 148–155.

    Article  CAS  Google Scholar 

  4. Lewin GR, Barde YA . Physiology of the neurotrophins A Rev Neurosci 1996 19: 289–317.

    Article  CAS  Google Scholar 

  5. Thoenen H, Castrén E, Berzaghi M, Blöchl A, Lindholm D . Recent advances in the treatment of neurodegenerative disorders and cognitive dysfunction. In: Racagni G, Brunello N, Langer SZ (eds). International Academy for Biomedical Drug Research. Vol. 7: Karger: Basel 1994 197–203.

    Google Scholar 

  6. Sendtner M, Holtman B, Hughes RA . The response of motoneurons to neurotrophins Neurochem Res 1996 21: 831–841.

    Article  CAS  Google Scholar 

  7. Yuen EC, Mobley WC . Therapeutic potential of neurotrophic factors for neurological disorders Ann Neurol 1996 40: 346–354.

    Article  CAS  Google Scholar 

  8. Ono M, Ichihara J, Nonomura T, Itakura Y, Taiji M, Nakayama C, Noguchi H . Brain-derived neurotrophic factor reduces blood glucose level in obese diabetic mice but not in normal mice Biochem Biophys Res Commun 1997 238: 633–637.

    Article  CAS  Google Scholar 

  9. Tonra JR, Ono M, Liu X, Garcia K, Jackson C, Yancopoulos GD, Wiegand SJ, Wong V . Brain derived neurotrophic factor improves blood glucose control and alleviates fasting hyperglycemia in C57BLKS-leprdb/leprdb mice Diabetes 1999 48: 588–594.

    Article  CAS  Google Scholar 

  10. Ono M, Itakura Y, Nonomura T, Nakagawa T, Nakayama C, Taiji M, Noguchi H . Intermittent administration of brain-derived neurotrophic factor ameliorates glucose metabolism in obese diabetic mice Metabolism 2000 49: 129–133.

    Article  CAS  Google Scholar 

  11. Nakagawa T, Tsuchida A, Itakura Y, Nonomura T, Ono M, Hirota F, Inoue T, Nakayama C, Taiji M, Noguchi H . Brain-derived neurotrophic factor (BDNF) regulates glucose metabolism by modulating energy balance in diabetic mice Diabetes 2000 49: 436–444.

    Article  CAS  Google Scholar 

  12. Collins S, Kuhn CM, Petro AE, Swick AG, Chrunyk BA, Surwit RS . Role of leptin in fat regulation Nature 1996 380: 667.

    Article  Google Scholar 

  13. Gong D-W, He Y, Karas M, Reitman M . Uncoupling protein-3 is a mediator of thermogenesis regulated by thyroid hormone, β3-adrenergic agonists, and leptin J Biol Chem 1997 272: 24129–24132.

    Article  CAS  Google Scholar 

  14. Kamohara S, Burcelin R, Halaas JL, Friedman JM, Charron MJ . Acute stimulation of glucose metabolism in mice by leptin treatment Nature 1997 389: 374–377.

    Article  CAS  Google Scholar 

  15. Coleman DL, Hummel KP . Studies with the mutation, diabetes, in the mouse Diabetologia 1967 3: 238–248.

    Article  CAS  Google Scholar 

  16. Coleman DL . Obese and diabetes: two mutant genes causing diabetes-obesity syndromes in mice Diabetologia 1978 14: 141–148.

    Article  CAS  Google Scholar 

  17. Mayer J, Russell RE, Bates MW, Dickie MN . Basal oxygen consumption of hereditarily obese and diabetic mice Endocrinology 1952 50: 318–323.

    Article  CAS  Google Scholar 

  18. Chen H, Charlat O, Tartaglia LA, Woolf EA, Weng X, Ellis SJ, Lakey ND, Culpepper J, Moore KJ, Breitbart RE, Duyk GM, Tepper RI, Morgenstern JP . Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice Cell 1996 84: 491–495.

    Article  CAS  Google Scholar 

  19. Lee GH, Proenca R, Montez JM, Carroll KM, Darvishzadeh JG, Lee JI, Friedman JM . Abnormal splicing of the leptin receptor in diabetic mice Nature 1996 379: 632–635.

    Article  CAS  Google Scholar 

  20. Campfield LA, Smith FJ, Guisez Y, Devos R, Burn P . Recombinant mouse OB protein: evidence for a peripheral signal linking adiposity and central neural networks Science 1995 269: 546–549.

    Article  CAS  Google Scholar 

  21. Halaas JF, Gajiwala KS, Maffei M, Cohen SL, Chait BT, Rabinowitz D, Lallone RL, Burley SK, Friedman JM . Weight-reducing effects of the plasma protein encoded by the obese gene Science 1995 269: 543–546.

    Article  CAS  Google Scholar 

  22. Simonson DC, Rossetti L, Giaccari A, DeFronzo RA . Glucose toxicity. In: Alberti KGMM, Zimmet P, DeFronzo RA (eds). International textbook on diabetes mellitus, 2nd edn. Wiley: West Sussex 1997 713–744.

  23. Valenzuela DM, Maisonpierre PC, Glass DJ, Rojas E, Nunez L, Kong Y, Gies DR, Stitt TN, Ip NY, Yancopoulos GD . Alternative forms of rat TrkC with different functional capabilities Neuron 1993 10: 963–974.

    Article  CAS  Google Scholar 

  24. Poduslo JF, Curran GL . Permiability at the blood-brain and blood-nerve barriers of the neurotrophic factors: NGF, CNTF, NT-3, BDNF Mol Brain Res 1996 36: 280–286.

    Article  CAS  Google Scholar 

  25. Pan W, Banks WA, Fasold MB, Bluth J, Kastin AJ . Transport of brain-derived neurotrophic factor across the blood-brain barrier Neuropharmacology 1998 37: 1553–1561.

    Article  CAS  Google Scholar 

  26. Lyons WE, Mamounas LA, Ricaurate GA, Coppala V, Reid SW, Bora SH, Wihler C, Koliatsos VE, Tessarollo L . Brain-derived neurotrophic factor-deficient mice develop aggressiveness and hyperphagia in conjunction with brain serotonergic abnormalities Proc Natl Acad Sci USA 1999 96: 15239–15244.

    Article  CAS  Google Scholar 

  27. Kernie SG, Liebl DJ, Parada LF . BDNF regulates eating behavior and locomotor activity in mice EMBO J 2000 19: 1290–1300.

    Article  CAS  Google Scholar 

  28. Pelleymounter MA, Cullen MJ, Baker MB, Hecht R, Winters D, Boone T, Collins F . Effects of the obese gene product on body weight regulation in ob/ob mice Science 1995 269: 540–543.

    Article  CAS  Google Scholar 

  29. Schwartz MW, Seeley RJ, Campfield LA, Burn P, Baskin DG . Identification of targets of leptin action in rat hypothalamus J Clin Invest 1996 98: 1101–1106.

    Article  CAS  Google Scholar 

  30. Elmquist JK, Ahima RS, Maratos-Flier E, Flier JS, Saper CB . Leptin activates neurons in ventrobasal hypothalamus and brainstem Endocrinology 1997 138: 839–842.

    Article  CAS  Google Scholar 

  31. Fei H, Okano HJ, Li C, Lee G-H, Zhao C, Darnell R, Friedman JM . Anatomic localization of alternatively spliced leptin receptors (Ob-R) in mouse brain and other tissues Proc Natl Acad Sci USA 1997 94: 7001–7005.

    Article  CAS  Google Scholar 

  32. Hetherington AW, Ranson SW . The spontaneous activity and food intake of rats with hypothalamic lesions Am J Physiol 1942 136: 609–617.

    Article  CAS  Google Scholar 

  33. Nonogaki K . New insight into sympathetic regulation of glucose and fat metabolism Diabetologia 2000 43: 533–549.

    Article  CAS  Google Scholar 

  34. Saito M, Minokoshi Y, Shimazu T . Accelerated norepinephrine turnover in peripheral tissues after ventromedial hypothalamic stimulation in rats Brain Res 1989 481: 298–303.

    Article  CAS  Google Scholar 

  35. Satoh N, Ogawa Y, Katsuura G, Numata Y, Masuzaki H, Yoshimasa Y, Nakao K . Satiety effect and sympathetic activation of leptin are mediated by hypothalamic melanocortin system Neurosci Lett 1998 249: 107–110.

    Article  CAS  Google Scholar 

  36. Commins SP, Marsh DJ, Thomas SA, Watson PM, Padgett MA, Palmiter R, Gettys TW . Norepinephrine is required for leptin effects on gene expression in brown and white adipose tissue Endocrinology 1999 140: 4772–4778.

    Article  CAS  Google Scholar 

  37. Jacobsson A, Stadler U, Glotzer MA, Kozak LP . Mitochondrial uncoupling protein from mouse brown fat. Molecular cloning, genetic mapping, and mRNA expression J Biol Chem 1985 260: 16250–16254.

    CAS  Google Scholar 

  38. Chinookoswong N, Wang JL, Shi ZQ . Leptin restores euglycemia and normalizes glucose turnover in insulin-deficient diabetes in the rat Diabetes 1999 48: 1487–1492.

    Article  CAS  Google Scholar 

  39. Shimomura I, Hammer RE, Ikemoto S, Brown MS, Goldstein JL . Leptin reverses insulin resistance and diabetes mellitus in mice with congenital lipodystrophy Nature 1999 401: 73–76.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Mr Masayuki Satoh (Sumitomo Chemical, Osaka, Japan) for conducting the glucose oxidation analysis. This study was supported by Sumitomo Pharmaceuticals Co. Ltd, Osaka, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Taiji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsuchida, A., Nonomura, T., Ono-Kishino, M. et al. Acute effects of brain-derived neurotrophic factor on energy expenditure in obese diabetic mice. Int J Obes 25, 1286–1293 (2001). https://doi.org/10.1038/sj.ijo.0801678

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ijo.0801678

Keywords

This article is cited by

Search

Quick links