Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Paper
  • Published:

The effect of physiological levels of glucagon-like peptide-1 on appetite, gastric emptying, energy and substrate metabolism in obesity

Abstract

OBJECTIVE: Peripheral infusions of glucagon-like peptide-1 (GLP-1) in humans have been shown to inhibit gastrointestinal motility and decrease hunger and energy intake. However, these investigations used supraphysiological doses. The objective of this study was to investigate the effects of a GLP-1 infusion in a physiological dose on appetite sensations, energy intake, gastric emptying, energy and substrate metabolism.

METHODS: Eighteen obese men participated in the placebo-controlled, randomized, single-blinded, cross-over study with infusion of GLP-1 or saline. Resting metabolic rate (RMR) and substrate oxidations were measured by ventilated hood before and after an energy-fixed breakfast. Gastric emptying was measured using paracetamol as a marker. Visual analogue scales were used to assess appetite sensations, thirst and comfort throughout the experiment and palatability of the test meals. Blood was sampled for analysis of hormones (GLP-1, GLP-2, glucose-dependent insulinotropic polypeptide (GIP), insulin, glucagon), and substrates (glucose, lactate, non-esterified fatty acids (NEFA), triacylglycerol (TAG)). Ad libitum energy intake at lunch was registered.

RESULTS: Following the breakfast, GLP-1 infusion suppressed ratings of hunger and prospective food consumption (P<0.05), whereas all other subjective ratings and ad libitum energy intake were unaffected. RMR, carbohydrate oxidation and gastric emptying rate were lower during the GLP-1 infusion compared with the saline infusion (P<0.001, P<0.05, P<0.0001, respectively). All plasma hormone and substrate profiles, except NEFA, were significantly reduced by GLP-1 (P<0.0001).

CONCLUSION: It is concluded that GLP-1 in physiological concentrations powerfully reduces the rate of entry of nutrients into the circulation by a reduction of gastric emptying rate in obese subjects. The effect of GLP-1 on appetite and food intake may be beneficial in weight reduction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

1
2
3
4
5

Similar content being viewed by others

References

  1. Varndell IM, Bishop AE, Sikri KL, Uttenthal LO, Bloom SR, Polak JM . Localization of glucagon-like peptide (GLP) immunoreactants in human gut and pancreas using light and electron microscopic immunocytochemistry J Histochem Cytochem 1985 33: 1080–1086.

    Article  CAS  Google Scholar 

  2. Eissele R, Göke R, Willemer S, Harthus H-P, Vermeer H, Arnold R, Göke B . Glucagon-like peptide-1 cells in the gastrointestinal tract and pancreas of rat, pig and man Eur J Clin Invest 1992 22: 283–291.

    Article  CAS  Google Scholar 

  3. Kreymann B, Williams G, Ghatei MA, Bloom SR . Glucagon-like peptide-1 7-36: a physiological incretin in man Lancet 1987 ii: 1300–1303.

    Article  Google Scholar 

  4. Elliott RM, Morgan LM, Tredger JA, Deacon S, Wright J, Marks V . Glucagon-like peptide-1 (7-36) amide and glucose-dependent insulinotropic polypeptide secretion in response to nutrient ingestion in man: acute post-prandial and 24-h secretion patterns J Endocrinol 1993 138: 159–166.

    Article  CAS  Google Scholar 

  5. Qualmann C, Nauck MA, Holst JJ, Ørskov C, Creutzfeldt W . Glucagon-like peptide-1 (7-36 amide) secretion in response to luminal sucrose from the upper and lower gut Scand J Gastroenterol 1995 30: 892–896.

    Article  CAS  Google Scholar 

  6. Ørskov C, Wettergren A, Holst JJ . Secretion of the incretin hormones glucagon-like peptide-1 and gastric inhibitory polypeptide correlates with insulin secretion in normal man throughout the day Scand J Gastroenterol 1996 31: 665–670.

    Article  Google Scholar 

  7. Flint A, Raben A, Astrup A, Holst JJ . Glucagon-like peptide 1 promotes satiety and suppresses energy intake in humans J Clin Invest 1998 101: 515–520.

    Article  CAS  Google Scholar 

  8. Näslund E, Gutniak M, Skogar S, Rössner S, Hellström PM . Glucagon-like peptide-1 (GLP-1) increases the period of postprandial satiety and slows gastric emptying in obese humans Am J Clin Nutr 1998 68: 525–530.

    Article  Google Scholar 

  9. Näslund E, Barkeling B, King N, Gutniak M, Blundell JE, Holst JJ, Rössner S, Hellström PM . Energy intake and appetite are suppressed by glucagon-like peptide-1 (GLP-1) in obese men Int J Obes Relat Metab Disord 1999 23: 304–311.

    Article  Google Scholar 

  10. Gutswiller JP, Göke B, Drewe J, Hildebrand P, Ketterer S, Handschin D, Winterhalder R, Conen D, Beglinger C . Glucagon-like peptide-1: a potent regulator of food intake in humans Gut 1999 44: 81–86.

    Article  Google Scholar 

  11. Schjoldager B, Mortensen P-E, Christiansen J, Ørskov C, Holst J . GLP-1 (glucagon-like peptide 1) and truncated GLP-1, fragments of human proglucagon, inhibit gastric acid secretion in man Dig Dis Sci 1989 35: 703–708.

    Article  Google Scholar 

  12. O'Halloran DJ, Nikou GC, Kreymann B, Ghatei MA, Bloom SR . Glucagon-like peptide-1 (7-36)-NH2: a physiological inhibitor of gastric acid secretion in man J Endocrinol 1990 126: 169–173.

    Article  CAS  Google Scholar 

  13. Wettergren A, Petersen H, Ørskov C, Christiansen J, Sheikh SP, Holst JJ . Glucagon-like peptide-1 7-36 amide and peptide YY from the L-cell of the ileal mucosa are potent inhibitors of vagally induced gastric acid secretion in man Scand J Gastroenterol 1994 29: 501–505.

    Article  CAS  Google Scholar 

  14. Nauck MA, Niedereichholz U, Ettler R, Holst JJ, Ørskov C, Ritzel R, Schmiegel WH . Glucagon-like peptide 1 inhibition of gastric emptying outweighs its insulinotropic effects in healthy humans Am J Physiol 1997 273: (Endocrinol Metab 36): E981–E988.

    Google Scholar 

  15. Hwa JJ, Ghibaudi L, Williams P, Witten MB, Tedesco R, Strader CD . Differential effects of intracerebroventricular glucagon-like peptide-1 on feeding and energy expenditure regulation Peptides 1998 19: 869–875.

    Article  CAS  Google Scholar 

  16. Shalev A, Holst JJ, Keller U . Effects of glucagon-like peptide 1 (7-36 amide) on whole-body protein metabolism in healthy man Eur J Clin Invest 1997 27: 10–16.

    Article  CAS  Google Scholar 

  17. Flint A, Raben A, Holst JJ, Astrup A . The effect of glucagon-like peptide-1 on energy expenditure and substrate metabolism in humans Int J Obes Relat Metab Disord 2000 24: 288–298.

    Article  CAS  Google Scholar 

  18. Raben A, Mygind E, Saltin B, Astrup A . Lower activity of oxidative key enzymes and smaller fiber areas in skeletal muscle of post-obese women Am J Physiol Endocrinol Metab 1998 275: E487–494.

    Article  CAS  Google Scholar 

  19. Flint A, Raben A, Blundell JE, Astrup A . Reproducibility, validity and power of visual analogue scales in assessment of subjective appetite sensations in single meal test studies Int J Obes Relat Metab Disord 2000 24: 38–48.

    Article  CAS  Google Scholar 

  20. Klausen B, Toubro S, Astrup A . Age and sex effects on energy expenditure Am J Clin Nutr 1997 65: 895–907.

    Article  CAS  Google Scholar 

  21. Costill DL . Carbohydrates for exercise: dietary demands for optimal performance Int J Sports Med 1988 9: 1–18.

    Article  CAS  Google Scholar 

  22. Fellows IW, Macdonald IA . An automated method for the measurement of oxygen consumption and carbon dioxide excretion in man Clin Phys Physiol Meas 1985 6: 349–355.

    Article  CAS  Google Scholar 

  23. Elia M, Livesey G . Energy expenditure and fuel selection in biological systems: the theory and practice of calculations based on indirect calorimetry and tracer methods. In: Simopoulus AP (ed). Metabolic control of eating, energy expenditure and the bioenergetics of obesity. World Review of Nutrition and Diet 70: Karger: Basel 1992 68–131.

    Google Scholar 

  24. Wahlefeld AW . Triglycerides. Determination after enzymatic hydrolysis. In: Bergmayer HU (ed). Methods of enzymatic analysis, 2nd ed. Academic Press: New York 1974.

    Google Scholar 

  25. Deeg R, W Kraemer, J Ziegenhorn: Kinetic determination of serum glucose by use of the hexokinase/glucose-6-phosphate dehydrogenase method . J Clin Chem Clin Biochem 1980 18: 49–52.

  26. Noll F . L-(+)-Lactate. Determination with LDH, GPT and NAD. In: Bergmayer HU (ed).Methods of enzymatic analysis, 2nd ed. Academic Press: New York 1974.

    Google Scholar 

  27. Albano JDM, Ekins RP, Maritz G, Turner RC . A sensitive precise radioimmunoassay of serum insulin relying on charcoal separation of bound and free hormone moieties Acta Endocrinol 1972 70: 487–509.

    Article  CAS  Google Scholar 

  28. Ørskov C, Rabenhøj A, Wettergren A, Kofod H, Holst JJ . Tissue and plasma concentrations of amidated and glycine-extended glucagon-like peptide 1 in humans Diabetes 1994 43: 535–539.

    Article  Google Scholar 

  29. Ørskov C, Jeppesen J, Madsbad S, Holst JJ . Proglucagon products in plasma of noninsulin-dependent diabetics and nondiabetic controls in the fasting state and after oral glucose and intravenous arginine J Clin Invest 1991 87: 415–423.

    Article  Google Scholar 

  30. Hartmann B, Johnsen AH, Ørskov C, Holst JJ . Structure, analysis and secretion of human glucagon-like peptide-2 (GLP-2). (Abstract). Diabetes 1996 45 (Suppl 2): 300A.

    Google Scholar 

  31. Krarup T, Madsbad S, Moody AJ, Regeur L, Faber OK, Holst JJ, Sestoft L . Diminished immunoreactive gastric inhibitory polypeptide response to a meal newly diagnosed type 1 (insulin-dependent) diabetics J Clin Endocrinol Metab 1983 56: 1306–1312.

    Article  CAS  Google Scholar 

  32. Kirsten WJ, Hesselius GU . Rapid, automatic, high capacity Dumas determination of nitrogen Microchem J 1983 28: 529–547.

    Article  CAS  Google Scholar 

  33. Diggle PJ, Liang K-Y, Zegler SL . Analysis of longitudinal data Clarendon Press: Oxford 1994.

    Google Scholar 

  34. Senn S . Cross-over trials in clinical research Wiley: New York 1993.

    Google Scholar 

  35. Long SJ, Sutton JA, Amaee WB, Giouvanoudi A, Spyrou NM, Rogers PJ, Morgan LM . No effect of glucagon-like peptide-1 on short-term satiety and energy intake in man Br J Nutr 1999 81: 273–279.

    CAS  PubMed  Google Scholar 

  36. Tang-Christensen M, Larsen PJ, Göke R, Fink-Jensen A, Jessop DA, Møller M, Sheikh SP . Central administration of GLP-1 (7-36) amide inhibits food and water intake in rats Am J Physiol 1996 271: (Regulatory Integrative Comp Physiol 40): R848–R856.

    Google Scholar 

  37. Holst JJ . Enteroglucagon A Rev Physiol 1997 59: 257–271.

    Article  CAS  Google Scholar 

  38. Larsen PJ, Tang-Christensen M, Holst JJ, Ørskov C . Distribution of glucagon-like peptide-1 and other preproglucagon-derived peptides in the rat hypothalamus and brainstem Neuroscience 1997 77: 257–270.

    Article  CAS  Google Scholar 

  39. Schick RR, vorm Walde T, Zimmermann JP, Schusdziarra V, Classen M . Glucagon-like peptide 1-a novel brain peptide involved in feeding regulation. In: Ditschuneit H, Gries FA, Hauner H, Schusdziarra V, Wechsler JG (eds). Obesity in Europe. Libbey & Company; 1993 363–367.

  40. Turton MD, O'Shea D, Gunn I, Beak SA, Edwards MB, Meeran K, Choi SJ, Taylor GM, Heath MM, Lambert PD, Wilding JPH, Smith DM, Ghatei MA, Herbert J, Bloom SR . A role for glucagon-like peptide-1 in the central regulation of feeding Nature 1996 379: 69–72.

    Article  CAS  Google Scholar 

  41. Ørskov C, Poulsen SS, Møller M, Holst JJ . Glucagon-like peptide 1 receptors in the subfornical organ and the area postrema are accessible to circulating glucagon-like peptide 1 Diabetes 1996 45: 832–835.

    Article  Google Scholar 

  42. Goldstone AP, Mercer JG, Gunn I, Moar KM, Edwards CM, Rossi M, Howard JK, Rasheed S, Turton MD, Small C, Heath MM, O'Shea D, Steere J, Meeran K, Ghatei MA, Hoggard N, Bloom SR . Leptin interacts with glucagon-like peptide-1 neurons to reduce food intake and body weight in rodents FEBS Lett 1997 415: 134–138.

    Article  CAS  Google Scholar 

  43. Van Dijk G, Thiele TE, Donahey CK, Campfield IA, Smith FJ, Burn P, Bernstein IL, Woods SC, Seeley RJ . Central infusions of leptin and GLP-1-(7-36) amide differentially stimulate c-FLI in the rat brain Am J Physiol 1996 271: R1096–R1100.

    CAS  PubMed  Google Scholar 

  44. Drewes C, Nauck MA, Horn R, Holst J, Schmiegel W, Brabant G . A liquid mixed meal or exogenous glucagon-like peptide-1 (GLP-1) do not alter plasma leptin concentrations in healthy volunteers Acta Diabetol 1997 34: 230–234.

    Article  CAS  Google Scholar 

  45. Shalev A, Vosmeer S, Keller U . Absence of short-term effects of glucagon-like peptide-1 and of hyperglycemia on plasma leptin levels in man Metabolism 1997 46: 723–725.

    Article  CAS  Google Scholar 

  46. Todd JF, Wilding JPH, Edwards CMB, Khan FA, Ghatei MA, Bloom SR . Glucagon-like peptide-1 (GLP-1): a trial of treatment in non-insulin-dependent diabetes mellitus Eur J Clin Invest 1997 27: 533–536.

    Article  CAS  Google Scholar 

  47. Imeryuz N, Yegen BC, Bozkurt A, Coskun T, Villanueva-Penacarrillo ML . Glucagon-like peptide-1 inhibits gastric emptying via vagal afferent-mediated central mechanisms Am J Physiol 1997 273: G920–927.

    CAS  PubMed  Google Scholar 

  48. Sepple CP, Read NW . Gastrointestinal correlates of the development of hunger in man Appetite 1989 13: 183–191.

    Article  CAS  Google Scholar 

  49. Read N, French S, Cunningham K . The role of the gut in regulating food intake in man Nutr Rev 1994 52: 1–10.

    Article  CAS  Google Scholar 

  50. Scrocchi LA, Brown TJ, MacLusky N, Brubaker PL, Auerbach AB, Joyner AL, Drucker DJ . Glucose intolerance but normal satiety in mice with a null mutation in the glucagon-like peptide 1 receptor gene Nature Med 1996 2: 1254–1258.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully thank John Lind, Inge Timmermann, Bente Knap, Jannie Møller, Charlotte Kostecki, Karina G Larsen, Lone K Larsen, Trine Jessen, Lene Albaek, Bolette Hartmann and Helle Angelo for expert technical assistance. This study was supported by the Danish Research and Development Program for Food Technology 1995-1997 (FØTEK II, 9315013) and the Danish Medical Research Council (12-1610-1). JJ Holst was supported by the Danish Biotechnology Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Flint.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flint, A., Raben, A., Ersbøll, A. et al. The effect of physiological levels of glucagon-like peptide-1 on appetite, gastric emptying, energy and substrate metabolism in obesity. Int J Obes 25, 781–792 (2001). https://doi.org/10.1038/sj.ijo.0801627

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ijo.0801627

Keywords

This article is cited by

Search

Quick links