Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Paper
  • Published:

The association between the val/ala-55 polymorphism of the uncoupling protein 2 gene and exercise efficiency

Abstract

BACKGROUND: Energy expenditure may partly be determined by genetic variations in uncoupling proteins. We have previously found an increased physical activity but a similar 24-h energy expenditure (EE) in subjects with the val/val-55 UCP2 genotype compared to those with the ala/ala genotype which indicates that the val-55 allele is statistically associated with a higher metabolic efficiency.

DESIGN: EE during bicycling was determined by indirect calorimetry at three different loads (30, 40 and 60% of VO2max in eight subjects with the val/val-55 genotype (35±6 y weight=76.8±13.6 kg, VO2max=2.79±0.71 l/min) and eight subjects with the ala/ala-55 genotype (37±3 y, weight=78.3±16.5 kg, VO2max=2.66±0.41 l/min).

RESULTS: Incremental exercise efficiency across the three different work levels was higher in the val/val (25.3%, c.i. 24.2–26.4%) than in the ala/ala (23.6%, c.i. 22.5–24.7%) genotype P<0.05. Gross exercise efficiency at 40% VO2max was higher in the val/val (15.3±0.6%) than in the ala/ala (13.5±0.4%) group.

CONCLUSION: As the val/ala-55 polymorphism is located in a domain of the protein without any known function, the different exercise efficiency between the two genotypes most likely reflects a linkage disequilibrium with a functionally significant polymorphism in UCP2 or in the neighbouring UCP3 gene. The study suggests that variations in the UCP genes may affect not only basal metabolic rate but also influence energy costs of exercise.

International Journal of Obesity (2001) 25, 467–471

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Brand MD, Couture P, Else PL, Withers KW, Hulbert AJ . Evolution of energy metabolism. Proton permeability of the inner membrane of liver mitochondria is greater in mammal than in the reptile Biochem J 1991 275: 81–86.

    Article  CAS  Google Scholar 

  2. Rolfe DFS, Brown GC . Cellular energy utilisation and molecular origin of standard metabolic rate in mammals Physiol Rev 1997 77: 731–758.

    Article  CAS  Google Scholar 

  3. Nicholls DG, Locke RM . Thermogenic mechanisms in brown fat Physiol Rev 1984 64: 1–64.

    Article  CAS  Google Scholar 

  4. Fleury C, Neverova M, Collins S, Raimbault S, Champigny O, Levi-Meyrueis C, Bouillaud F, Seldin MF, Surwit RS, Ricquier D, Warden CH . Uncoupling protein-2: a novel gene linked to obesity and hyperinsulinemia Nature Genet 1997 15: 269–271.

    Article  CAS  Google Scholar 

  5. Gimeno RE, Dembski M, Weng X, Deng N, Shyjan AW, Gimeno CJ, Iris F, Ellis SJ, Woolf EA, Tartaglia LA . Cloning and characterization of an uncoupling protein homolog. A potential molecular mediator of human thermogenesis Diabetes 1997 46: 900–906.

    Article  CAS  Google Scholar 

  6. Klaus S, Casteilla L, Bouillaud F, Ricquier D . The uncoupling protein UCP: a membraneous mitochondrial ion carrier exclusively expressed in brown adipose tissue Int J Biochem 1991 23: 791–801.

    Article  CAS  Google Scholar 

  7. Vidal-Puig A, Solanes G, Grujic D, Flier JS, Lowell BB . UCP3: an uncoupling protein homologue expressed preferentially and abundantly in skeletal muscle and brown adipose tissue Biochem Biophys Res Commun 1997 235: 79–82.

    Article  CAS  Google Scholar 

  8. Pecqueur C, Cassard Doulcier AM, Raimbault S, Miroux B, Fleury C, Gelly C, Bouillaud F, Ricquier D . Functional organization of the human uncoupling protein-2 gene, and juxtaposition of the uncoupling protein-3 gene Biochem Biophys Res Commun 1999 255: 40–46.

    Article  CAS  Google Scholar 

  9. Gong D-W, He Y, Karas M, Reitman M . Uncoupling protein-3 is a mediator of thermogenesis regulated by thyroid hormone, β3-adrenergic agonists, and leptin J Biol Chem 1997 272: 24129–24132.

    Article  CAS  Google Scholar 

  10. Clapham JC, Arch JR, Chapman H, Haynes A, Lister C, Moore GB, Piercy V, Carter SA, Lehner I, Smith SA, Beeley LJ, Godden RJ, Herrity N, Skehel M, Changani KK, Hockings PD, Reid DG, Squires SM, Hatcher J, Trail B, Latcham J, Rastan S, Harper AJ, Cadenas S, Buckingham JA, Brand MD, Abuin A . Mice overexpressing human uncoupling protein-3 in skeletal muscle are hyperphagic and lean Nature 2000 406: 415–418.

    Article  CAS  Google Scholar 

  11. Schrauwen P, Xia J, Bogardus C, Pratley R, Ravussin E . Skeletal muscle UCP3 expression is a determinant of energy expenditure in Pima Indians Diabetes 1999 48: 146–149.

    Article  CAS  Google Scholar 

  12. Bouchard C, Pérusse L, Chagnon YC, Warden C, Ricquir D . Linkage between markers in the vicinity of the uncoupling protein 2 gene and resting metabolic rate in humans Hum Mol Genet 1997 6: 1887–1889.

    Article  CAS  Google Scholar 

  13. Walder K, Norman RA, Hanson RL, Schrauwen P, Neverova M, Jenkinson CP, Easlick J, Warden CH, Pecqueur C, Raimbault S, Ricquier D, Harper M, Silver K, Shuldiner AR, Solanes G, Lowell BB, Chung WK, Leibel RL, Pratley R, Ravussin E . Association between uncoupling protein polymorphisms (UCP2-UCP3) and energy metabolism/obesity in Pima Indians Hum Mol Genet 1998 7: 1431–1435.

    Article  CAS  Google Scholar 

  14. Klannemark M, Orho M, Groop L . No relationship between identified variants in the uncoupling protein 2 gene and energy expenditure Eur J Endocrinol 1998 139: 217–223.

    Article  CAS  Google Scholar 

  15. Astrup A, Toubro S, Dalgaard LT, Urhammer SA, Sørensen TIA, Pedersen O . Impact of the v/v 55 polymorphism of the uncoupling protein 2 gene on 24-h energy expenditure and substrate oxidation Int J Obes Relat Metab Disord 1999 23: 1030–1034.

    Article  CAS  Google Scholar 

  16. Schrauwen P, Troost FJ, Xia J, Ravussin E, Saris WHM . Skeletal muscle UCP2 and UCP3 expression in trained and untrained male subjects Int J Obes Relat Metab Disord 1999 23: 966–972.

    Article  CAS  Google Scholar 

  17. deWeir JB . New methods for calculating metabolic rate with special reference to protein metabolism J Physiol 1949 86: 1–9.

    Google Scholar 

  18. Heitmann BL . Prediction of body water and fat in adult Danes from measurements of electrical impedance. A validation study Int J Obes 1990 14: 789–802.

    CAS  PubMed  Google Scholar 

  19. Klausen B, Toubro S, Astrup A . Age and sex effects on energy expenditure Am J Clin Nutr 1997 65: 895–907.

    Article  CAS  Google Scholar 

  20. Shetty PS, Henry CJK, Black AE, Prentice AM . Energy requirements of adults: an update on basal metabolic rates (BMRs) and physical activity levels (PALs) Eur J Clin Nutr 1996 50 (Suppl 1): S11–S23.

    PubMed  Google Scholar 

  21. Urhammer SA, Dalgaard LT, Sørensen TIA, Møller AM, Andersen T, Tybjærg-Hansen, A, Hansen T, Clausen JO, Vestergaard H, Pedersen O . Multational analysis of the coding region of the uncoupling protein 2 gene in obese NIDDM patients: impact of a common amino acid polymorphism on juvenile and maturity onset of obesity and insulin resistance Diabetologia 1997 40: 1227–1230.

    Article  CAS  Google Scholar 

  22. Bienengraeber M, Echtay KS, Klingenberg M . H+ transport by uncoupling protein (UCP-1) is dependent on a histidine pair, absent in UCP-2 and UCP-3 Biochemistry 1998 37: 3–8.

    Article  CAS  Google Scholar 

  23. Zhang CY, Hagen T, Mootha VK, Slieker LJ, Lowell BB . Assessment of uncoupling activity of uncoupling protein 3 using a yeast heterologous expression system FEBS Lett 1999 449: 129–134.

    Article  CAS  Google Scholar 

  24. Vidal-Puig AJ, Grujic D, Zhang CY, Hagen T, Boss O, Ido Y, Szczepanik A, Wade J, Moottha V, Cortright R, Muoio DM, Lowell BB . Energy metabolism in uncoupling protein 3 gene knockout mice J Biol Chem 2000 275: 16258–16266.

    Article  CAS  Google Scholar 

  25. Klingenberg M, Echtay KS, Bienengaeber M, Winkler E, Huang SG . Structure-function relationship in UCP1 Int J Obes Relat Metab Disord 1999 23 (Suppl 6): S24–S29.

    Article  CAS  Google Scholar 

  26. Millet L, Vidal H, Andreelli F, Larrouy D, Riou J-P, Ricquir D, Laville M, Langin D . Increased Uncoupling protein-2 and -3 mRNA expression during fasting in obese and lean humans J Clin Invest 1997 100: 2665–2670.

    Article  CAS  Google Scholar 

  27. Boss O, Samec S, Dolloo A, Seydoux J, Muzzin P, Giacobino J-P . Tissue-dependent upregulation of rat uncoupling protein-2 expression in response to fasting or cold FEBS Lett 1997 412: 111–114.

    Article  Google Scholar 

  28. Khalfallah Y, Fages S, Laville M, Langin D, Vidal H . Regulation of uncoupling protein-2 and uncoupling protein-3 mRNA expression during lipid infusion in human skeletal muscle and subcutaneous adipose tissue Diabetes 2000 49: 25–31.

    Article  CAS  Google Scholar 

  29. Weigle DS, Selfridge LE, Schwartz MW, Seeley RJ, Cummings DE, Havel PJ, Kuijper JL, Beltrandel Rio H . Elevated free fatty acids induce uncoupling protein 3 expression in muscle. A potential explanation for the effect of fasting Diabetes 1998 47: 298–302.

    Article  CAS  Google Scholar 

  30. Tsuboyama-Kasaoka N, Tsunoda N, Maruyama K, Takahashi M, Kim H, Ikemoto S, Ezaki O . Up-regulation of uncoupling protein 3 (UCP3) mRNA by exercise training and down-regulation of UCP3 by denervation in skeletal muscles Biochem Biophys Res Commun 1998 247: 498–503.

    Article  CAS  Google Scholar 

  31. Argyropoulos G, Brown AM, Willi SM, Zhu J, He Y, Reitman M, Gevao SM, Spruill I, Garvey T . Effects of mutations in the human uncoupling protein 3 gene on the respiratory quotient and fat oxidation in severe obesity and type 2 diabetes J Clin Invest 1998 102: 1345–1351.

    Article  CAS  Google Scholar 

  32. Ravussin E, Lillioja S, Knowler WC, Christin L, Freymond D, Abbot WGH, Boyce V, Howard BV, Bogardus C . Reduced rate of energy expenditure as a risk factor for body-weight gain New Engl J Med 1988 318: 467–472.

    Article  CAS  Google Scholar 

  33. Zurlo F, Lillioja S, Puente E, Nyomba BL, Raz I, Saad MF, Swinburn BA, Knowler WC, Bogardus C, Ravussin E . Low ratio of fat to carbohydrate oxidation as predictor of weight gain: study of 24-h RQ Am J Physiol 1990 259: E650–E657.

    CAS  PubMed  Google Scholar 

  34. Dalgaard LT, Sørensen TIA, Andersen T, Hansen T, Pedersen O . An untranslated insertion variant in the uncoupling protein 2 gene is not related to body mass index and changes in body weight during a 26-year follow-up in Danish Caucasian men Diabetologia 1999 42: 1413–1416.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Martin Kreutzer for his dedicated support with the exercise tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Buemann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buemann, B., Schierning, B., Toubro, S. et al. The association between the val/ala-55 polymorphism of the uncoupling protein 2 gene and exercise efficiency. Int J Obes 25, 467–471 (2001). https://doi.org/10.1038/sj.ijo.0801564

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ijo.0801564

Keywords

This article is cited by

Search

Quick links