Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Research
  • Published:

Role of PKCα and PKCι in phenylephrine-induced contraction of rat corpora cavernosa

Abstract

Constriction of the penile vasculature prevents erection and is largely mediated by physiological agonists. We hypothesized that protein kinase C (PKC) may act as a regulator of penile vascular tone. Studies were designed to identify PKC isoforms present and to investigate their roles in phenylephrine-induced muscle contraction in the isolated rat corpora cavernosa. We demonstrated the presence of PKCα, β, γ, ɛ, δ, η, and ι in rat corpora cavernosa and a subcellular distribution, which favored a membrane association for PKCα, β, δ, and ι. Phenylephrine (3 μM) generated an active stress of 9.6±1.5 mN/mm2 and was associated with a significant increase of PKCα and PKCι immunoreactivity in the particulate fraction. The amount of PKCα and PKCι in the particulate fraction rose by 36±4.4 and 51±2.2% with phenylephrine stimulation. Furthermore, the phenylephrine concentration–response curve was potentiated in the presence of phorbol 12-myristate13-acetate (PMA) (0.1 μM), a PKC activator (EC50: phenylephrine 1.0±0.8 μM vs phenylephrine+PMA 0.3±0.1 μM) and inhibited in the presence of chelerythrine chloride (30 μM), a PKC inhibitor (EC50: phenylephrine 1.0±0.8 μM vs phenylephrine+chelerythrine chloride 5.7±2.4 μM). Based on these results, we suggest a potential role for PKCα and PKCι in phenylephrine-induced smooth muscle tone of the rat cavernosum.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Lue TF, Tanagho EA . Physiology of erection and pharmacological management of impotence. J Urol 1987; 137: 829–836.

    Article  CAS  Google Scholar 

  2. Andersson KE . Pharmacology of penile erection. Pharmacol Rev 2001; 53: 417–450.

    CAS  Google Scholar 

  3. Gong MC, Fujihara H, Somlyo AV, Somlyo AP . Translocation of rhoA associated with Ca2+ sensitization of smooth muscle. J Biol Chem 1997; 272: 10704–10709.

    Article  CAS  Google Scholar 

  4. Fujihara H et al. Inhibition of RhoA translocation and calcium sensitization by in vivo ADP-ribosylation with the chimeric toxin DC3B. Mol Biol Cell 1997; 8: 2437–2447.

    Article  CAS  Google Scholar 

  5. Somlyo AP, Somlyo AV . Signal transduction and regulation in smooth muscle. Nature 1994; 372: 231–236.

    Article  CAS  Google Scholar 

  6. Somlyo AP, Somlyo AV . Signal transduction by G-proteins, rho-kinase and protein phosphatase to smooth muscle and non-muscle myosin II. J Physiol (Lond) 2000; 522(Part 2): 177–185.

    Article  CAS  Google Scholar 

  7. Nishizuka Y . The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature 1988; 334: 661–665.

    Article  CAS  Google Scholar 

  8. Somlyo AP et al. Inositol trisphosphate, calcium and muscle contraction. Phil Trans R Soc Lond B 1988; 320: 399–414.

    Article  CAS  Google Scholar 

  9. Castagna M et al. Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J Biol Chem 1982; 257: 7847–7851.

    CAS  PubMed  Google Scholar 

  10. Rasmussen H, Takuwa Y, Park S . Protein kinase C in the regulation of smooth muscle contraction. FASEB J 1987; 1: 177–185.

    Article  CAS  Google Scholar 

  11. Walsh MP et al. Smooth muscle protein kinase C. Can J Physiol Pharmacol 1994; 72: 1392–1399.

    Article  CAS  Google Scholar 

  12. Nishizuka Y . Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science 1992; 258: 607–614.

    Article  CAS  Google Scholar 

  13. Hug H, Sarre TF . Protein kinase C isoenzymes: divergence in signal transduction? Biochem J 1993; 291(Pt 2): 329–343.

    Article  CAS  Google Scholar 

  14. Wingard CJ, Johnson JA, Holmes A, Prikosh A . Improved erectile function following Rho-kinase inhibition in a rat castrate model of erectile dysfunction. Am J Physiol Regul Integr Comp Physiol 2003; 284: R1572–R1579.

    Article  CAS  Google Scholar 

  15. Husain S, Abdel-Latif AA . Role of protein kinase C alpha in endothelin-1 stimulation of cytosolic phospholipase A2 and arachidonic acid release in cultured cat iris sphincter smooth muscle cells. Biochim Biophys Acta 1998; 1392: 127–144.

    Article  CAS  Google Scholar 

  16. Singer HA . Protein kinase C. In: Barany M (ed). Biochemistry of Smooth Muscle Contraction. Academic Press: San Diego, 1996, pp 155–165.

    Chapter  Google Scholar 

  17. Husain S, Abdel-Latif AA . Protein kinase C isoforms in iris sphincter smooth muscle: differential effects of phorbol ester on contraction and cAMP accumulation are species specific. Curr Eye Res 1996; 15: 329–334.

    Article  CAS  Google Scholar 

  18. Kraft AS, Anderson WB . Phorbol esters increase the amount of Ca2+, phospholipid-dependent protein kinase associated with plasma membrane. Nature 1983; 301: 621–623.

    Article  CAS  Google Scholar 

  19. Selbie LA, Schmitz-Peiffer C, Sheng Y, Biden TJ . Molecular cloning and characterization of PKC iota, an atypical isoform of protein kinase C derived from insulin-secreting cells. J Biol Chem 1993; 268: 24296–24302.

    CAS  PubMed  Google Scholar 

  20. Herbert JM, Augereau JM, Gleye J, Maffrand JP . Chelerythrine is a potent and specific inhibitor of protein kinase C. Biochem Biophys Res Commun 1990; 172: 993–999.

    Article  CAS  Google Scholar 

  21. O'brian CA, Kuo JF . Protin kinase C inhibitors. In: Kuo JF (ed). Protein Kinase C. Oxford University Press: New York, 1994, pp 96–120.

    Google Scholar 

  22. Quest AG, Bell RM . The molecular mechanism of protien kinase C regulation by lipids. In: Kuo JF (ed). Protein Kinase C. Oxford University Press: New York, 1994, pp 64–95.

    Google Scholar 

  23. Ryves WJ et al. Activation of the PKC-isotypes alpha, beta 1, gamma, delta and epsilon by phorbol esters of different biological activities. FEBS Lett 1991; 288: 5–9.

    Article  CAS  Google Scholar 

  24. Karibe H, Oishi K, Uchida MK . Involvement of protein kinase C in Ca(2+)-independent contraction of rat uterine smooth muscle. Biochem Biophys Res Commun 1991; 179: 487–494.

    Article  CAS  Google Scholar 

  25. Khalil RA, Lajoie C, Resnick MS, Morgan KG . Ca(2+)-independent isoforms of protein kinase C differentially translocate in smooth muscle. Am J Physiol 1992; 263: C714–C719.

    Article  CAS  Google Scholar 

  26. Taggart MJ, Lee YH, Morgan KG . Cellular redistribution of PKCalpha, rhoA, and ROKalpha following smooth muscle agonist stimulation. Exp Cell Res 1999; 251: 92–101.

    Article  CAS  Google Scholar 

  27. Lee YH et al. Isozyme-specific inhibitors of protein kinase C translocation: effects on contractility of single permeabilized vascular muscle cells of the ferret. J Physiol 1999; 517(Part 3): 709–720.

    Article  CAS  Google Scholar 

  28. Ganz MB, Seftel A . Glucose-induced changes in protein kinase C and nitric oxide are prevented by vitamin E. Am J Physiol Endocrinol Metab 2000; 278: E146–E152.

    Article  CAS  Google Scholar 

  29. Asaoka Y, Nakamura SI, Yoshida K, Nishizuka Y . Protein kinase C, calcium and phospholipid degradation. Trends Biochem Sci 1992; 17: 414–417.

    Article  CAS  Google Scholar 

  30. Huang KP, Huang FL, Nakabayashi H, Yoshida Y . Biochemical characterization of rat brain protein kinase C isozymes. J Biol Chem 1988; 263: 14839–14845.

    CAS  PubMed  Google Scholar 

  31. Li C, Xu Q . Mechanical stress-initiated signal transductions in vascular smooth muscle cells. Cell Signal 2000; 12: 435–445.

    Article  CAS  Google Scholar 

  32. Williams B . Mechanical influences on vascular smooth muscle cell function. J Hypertens 1998; 16: 1921–1929.

    Article  CAS  Google Scholar 

  33. Bauman AL, Scott JD . Kinase- and phosphatase-anchoring proteins: harnessing the dynamic duo. Nat Cell Biol 2002; 4: E203–E206.

    Article  CAS  Google Scholar 

  34. Pawson T, Scott JD . Signaling through scaffold, anchoring, and adaptor proteins. Science 1997; 278: 2075–2080.

    Article  CAS  Google Scholar 

  35. Michel JC, Scott JD . AKAP mediated signal transduction. Annu Rev Pharmacol Toxicol 2002; 42: 235–257.

    Article  CAS  Google Scholar 

  36. Ron D, Kazanietz MG . New insights into the regulation of protein kinase C and novel phorbol ester receptors. FASEB J 1999; 13: 1658–1676.

    Article  CAS  Google Scholar 

  37. Yoshida M et al. Effects of phorbol ester on lower urinary tract smooth muscles in rabbits. Eur J Pharmacol 1992; 222: 205–211.

    Article  CAS  Google Scholar 

  38. Eto M et al. Histamine-induced vasoconstriction involves phosphorylation of a specific inhibitor protein for myosin phosphatase by protein kinase C alpha and delta isoforms. J Biol Chem 2001; 276: 29072–29078.

    Article  CAS  Google Scholar 

  39. Murthy KS, Grider JR, Kuemmerle JF, Makhlouf GM . Sustained muscle contraction induced by agonists, growth factors, and Ca(2+) mediated by distinct PKC isozymes. Am J Physiol Gastrointest Liver Physiol 2000; 279: G201–G210.

    Article  CAS  Google Scholar 

  40. Thieme H et al. Mediation of calcium-independent contraction in trabecular meshwork through protein kinase C and rho-A. Invest Ophthalmol Vis Sci 2000; 41: 4240–4246.

    CAS  PubMed  Google Scholar 

  41. Bitar KN, Ibitayo A, Patil SB . HSP27 modulates agonist-induced association of translocated RhoA and PKC-alpha in muscle cells of the colon. J Appl Physiol 2002; 92: 41–49.

    Article  CAS  Google Scholar 

  42. Ono Y et al. Protein kinase C zeta subspecies from rat brain: its structure, expression, and properties. Proc Natl Acad Sci USA 1989; 86: 3099–3103.

    Article  CAS  Google Scholar 

  43. Nishizuka Y . Turnover of inositol phospholipids and signal transduction. Science 1984; 225: 1365–1370.

    Article  CAS  Google Scholar 

  44. Osada S et al. A new member of the protein kinase C family, nPKC theta, predominantly expressed in skeletal muscle. Mol Cell Biol 1992; 12: 3930–3938.

    Article  CAS  Google Scholar 

  45. Martiny-Baron G et al. Selective inhibition of protein kinase C isozymes by the indolocarbazole Go 6976. J Biol Chem 1993; 268: 9194–9197.

    CAS  PubMed  Google Scholar 

  46. Toullec D et al. The bisindolylmaleimide GF 109203X is a potent and selective inhibitor of protein kinase C. J Biol Chem 1991; 266: 15771–15781.

    CAS  PubMed  Google Scholar 

  47. Ikebe M, Brozovich FV . Protein kinase C increases force and slows relaxation in smooth muscle: evidence for regulation of the myosin light chain phosphatase. Biochem Biophys Res Commun 1996; 225: 370–376.

    Article  CAS  Google Scholar 

  48. Gailly P, Gong MC, Somlyo AV, Somlyo AP . Possible role of atypical protein kinase C activated by arachidonic acid in Ca2+ sensitization of rabbit smooth muscle. J Physiol 1997; 500(Pt 1): 95–109.

    Article  CAS  Google Scholar 

  49. Woodsome TP et al. Expression of CPI-17 and myosin phosphatase correlates with Ca(2+) sensitivity of protein kinase C-induced contraction in rabbit smooth muscle. J Physiol 2001; 535: 553–564.

    Article  CAS  Google Scholar 

  50. Wang H et al. RhoA-mediated Ca2+ sensitization in erectile function. J Biol Chem 2002; 277: 30614–30621.

    Article  CAS  Google Scholar 

  51. Hirata K et al. Involvement of rho p21 in the GTP-enhanced calcium ion sensitivity of smooth muscle contraction. J Biol Chem 1992; 267: 8719–8722.

    CAS  PubMed  Google Scholar 

  52. Horowitz A, Menice CB, Laporte R, Morgan KG . Mechanisms of smooth muscle contraction. Physiol Rev 1996; 76: 967–1003.

    Article  CAS  Google Scholar 

  53. Slater SJ, Seiz JL, Stagliano BA, Stubbs CD . Interaction of protein kinase C isozymes with Rho GTPases. Biochemistry 2001; 40: 4437–4445.

    Article  CAS  Google Scholar 

  54. Damron DS et al. Role of PKC, tyrosine kinases, and Rho kinase in alpha-adrenoreceptor-mediated PASM contraction. Am J Physiol Lung Cell Mol Physiol 2002; 283: L1051–L1064.

    Article  CAS  Google Scholar 

  55. Chitaley K et al. Antagonism of Rho-kinase stimulates rat penile erection via a nitric oxide-independent pathway. Nat Med 2001; 7: 119–122.

    Article  CAS  Google Scholar 

  56. Rees RW et al. Y-27632, an inhibitor of Rho-kinase, antagonizes noradrenergic contractions in the rabbit and human penile corpus cavernosum. Br J Pharmacol 2001; 133: 455–458.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institute of Health (NIH DK59467) grant awarded to CJ Wingard. The authors are grateful to Dr John A Johnson for fruitful discussions during these studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C J Wingard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Husain, S., Young, D. & Wingard, C. Role of PKCα and PKCι in phenylephrine-induced contraction of rat corpora cavernosa. Int J Impot Res 16, 325–333 (2004). https://doi.org/10.1038/sj.ijir.3901164

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ijir.3901164

Keywords

This article is cited by

Search

Quick links