Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Myocarditis following adeno-associated viral gene expression of human soluble TNF receptor (TNFRII-Fc) in baboon hearts

Abstract

Sequestration of tumor necrosis factor-α (TNFα) by TNF-receptor immunoglobulin G (IgG)-Fc fusion proteins can limit heart failure progression in rodent models. In this study we directly injected an adeno-associated viruses (AAV)-2 construct encoding a human TNF receptor II IgG-Fc fusion protein (AAV-TNFRII-Fc) into healthy baboon hearts and assessed virally encoded gene expression and clinical response. Adult baboons received direct cardiac injections of AAV-TNFRII-Fc (5 × 1012 viral/genomes/baboon) or an equivalent dose of AAV-2 empty capsids, and were analyzed after 5 or 12 weeks. Viral genomes were restricted to the myocardium, and routine analyses (blood cell counts, clinical chemistries) remained unremarkable. Echocardiograms were unchanged but electrocardiograms revealed marked ST- and T-wave changes consistent with myocarditis only in baboons receiving AAV-TNFRII-Fc. TNFRII serum levels peaked at 3 times the baseline levels at 1–2 weeks postinjection and subsequently declined to baseline levels. TNFRII-Fc protein and transcripts were detected in the heart at harvest. After AAV injection, anti-AAV-2 antibody levels increased in all baboons, while anti-TNFRII-Fc could not be detected. Baboons that received AAV-TNFRII-Fc developed myocardial infiltrates including CD8+ cells. Thus, a cellular immune response to cardiac delivery of AAV encoding foreign proteins may be an important consideration for AAV-based cardiac gene therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Torre-Amione G, Kapadia S, Benedict C, Oral H, Young JB, Mann DL . Proinflammatory cytokine levels in patients with depressed left ventricular ejection fraction: a report from the Studies of Left Ventricular Dysfunction (SOLVD). J Am Coll Card 1996; 27: 1201–1206.

    Article  CAS  Google Scholar 

  2. Feldman AM, Combes A, Wagner D, Kadakomi T, Kubota T, Li YY et al. The role of tumor necrosis factor in the pathophysiology of heart failure. J Am Coll Card 2000; 35: 537–544.

    Article  CAS  Google Scholar 

  3. Kubota T, McTiernan CF, Frye CS, Slawson SE, Lemster BH, Koretsky AP et al. Dilated cardiomyopathy in transgenic mice with cardiac-specific overexpression of tumor necrosis factor-alpha. Circ Res 1997; 81: 627–635.

    Article  CAS  PubMed  Google Scholar 

  4. Li D, Zhao L, Liu M, Du X, Ding W, Zhang J et al. Kinetics of tumor necrosis factor alpha in plasma and the cardioprotective effect of a monoclonal antibody to tumor necrosis factor alpha in acute myocardial infarction. Am Heart J 1999; 137: 1145–1152.

    Article  CAS  PubMed  Google Scholar 

  5. Higuchi Y, McTiernan CF, Frye CB, McGowan BS, Chan TO, Feldman AM . Tumor necrosis factor receptors 1 and 2 differentially regulate survival, cardiac dysfunction, and remodeling in transgenic mice with tumor necrosis factor-alpha-induced cardiomyopathy. Circulation 2004; 109: 1892–1897.

    Article  CAS  PubMed  Google Scholar 

  6. Ramani R, Mathier M, Wang P, Gibson G, Togel S, Dawson J et al. Inhibition of tumor necrosis factor receptor-1-mediated pathways has beneficial effects in a murine model of postischemic remodeling. Am J Physiol 2004; 287: H1369–H1377.

    CAS  Google Scholar 

  7. Kubota T, Bounoutas GS, Miyagishima M, Kadokami T, Sanders VJ, Bruton C et al. Soluble tumor necrosis factor receptor abrogates myocardial inflammation but not hypertrophy in cytokine-induced cardiomyopathy. Circulation 2000; 101: 2518–2525.

    Article  CAS  PubMed  Google Scholar 

  8. Sugano M, Koyanagi M, Tsuchida K, Hata T, Makino N . In vivo gene transfer of soluble TNF-alpha receptor 1 alleviates myocardial infarction. FASEB J 2002; 16: 1421–1422.

    Article  CAS  PubMed  Google Scholar 

  9. Moreland LW, Baumgartner SW, Schiff MH, Tindall EA, Fleischmann RM, Weaver AL et al. Treatment of rheumatoid arthritis with a recombinant human tumor necrosis factor receptor (p75)-Fc fusion protein. N Engl J Med 1997; 337: 141–147.

    Article  CAS  PubMed  Google Scholar 

  10. Leonardi CL, Powers JL, Matheson RT, Goffe BS, Zitnik R, Wang A et al. Etanercept as monotherapy in patients with psoriasis. N Engl J Med 2003; 349: 2014–2022.

    Article  CAS  PubMed  Google Scholar 

  11. Mann DL, McMurray JJ, Packer M, Swedberg K, Borer JS, Colucci WS et al. Targeted anticytokine therapy in patients with chronic heart failure: results of the Randomized Etanercept Worldwide Evaluation (RENEWAL). Circulation 2004; 109: 1594–1602.

    Article  CAS  PubMed  Google Scholar 

  12. Su H, Lu R, Kan YW . Adeno-associated viral vector-mediated vascular endothelial growth factor gene transfer induces neovascular formation in ischemic heart. Proc Nat Acad Sci USA 2000; 97: 13801–13806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhu T, Zhou L, Mori S, Wang Z, McTiernan CF, Qiao C et al. Sustained whole-body functional rescue in congestive heart failure and muscular dystrophy hamsters by systemic gene transfer. Circulation 2005; 112: 2650–2659.

    Article  CAS  PubMed  Google Scholar 

  14. Pacak CA, Mah CS, Thattaliyath BD, Conlon TJ, Lewis MA, Cloutier DE et al. Recombinant adeno-associated virus serotype 9 leads to preferential cardiac transduction in vivo. Circ Res 2006; 99: 3–9.

    Article  Google Scholar 

  15. Chirmule N, Xiao W, Truneh A, Schnell MA, Hughes JV, Zoltick P et al. Humoral immunity to adeno-associated virus type 2 vectors following administration to murine and nonhuman primate muscle. J Virol 2000; 74: 2420–2425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sandalon Z, Bruckheimer EM, Lustig KH, Burstein H . Long-term suppression of experimental arthritis following intramuscular administration of a pseudotyped AAV2/1-TNFR:Fc vector. Mol Ther 2007; 15: 264–269.

    Article  CAS  PubMed  Google Scholar 

  17. Yu X, Patterson E, Huang S, Garrett MW, Kem DC . Tumor necrosis factor α rapid ventricular tachyarrhythmias, and infarct size in canine models of myocardial infarction. J Cardiovasc Pharmacol 2005; 45: 153–159.

    Article  CAS  PubMed  Google Scholar 

  18. Chirmule N, Propert K, Magosin S, Qian Y, Qian R, Wilson J . Immune responses to adenovirus and adeno-associated virus in humans. Gene Therapy 1999; 6: 1574–1583.

    Article  CAS  PubMed  Google Scholar 

  19. Anderson P, Louie J, Lau A, Broder M . Mechanisms of differential immunogenicity of tumor necrosis factor inhibitors. Curr Rheumatol Rep 2005; 7: 3–9.

    Article  CAS  PubMed  Google Scholar 

  20. Barrier BF, Bates GW, Leland MM, Leach DA, Robinson RD, Propst AM . Efficacy of anti-tumor necrosis factor therapy in the treatment of spontaneous endometriosis in baboons. Fertil Steril 2004; 81 (Suppl 1): 775–779.

    Article  CAS  PubMed  Google Scholar 

  21. Gao G, Lu Y, Calcedo R, Grant RL, Bell P, Wang L et al. Biology of AAV serotype vectors in liver-directed gene transfer to nonhuman primates. Mol Ther 2006; 13: 77–87.

    Article  CAS  PubMed  Google Scholar 

  22. Herzog RW, Fields PA, Arruda VR, Brubaker JO, Armstrong E, McClintock D et al. Influence of vector dose on factor IX-specific T and B cell responses in muscle-directed gene therapy. Hum Gene Ther 2002; 13: 1281–1291.

    Article  CAS  PubMed  Google Scholar 

  23. Nathwani AC, Davidoff A, Hanawa H, Zhou JF, Vanin EF, Nienhuis AW . Factors influencing in vivo transduction by recombinant adeno-associated viral vectors expressing the human factor IX cDNA. Blood 2001; 97: 1258–1265.

    Article  CAS  PubMed  Google Scholar 

  24. Sarukhan A, Soudais C, Danos O, Jooss K . Factors influencing cross-presentation of non-self antigens expressed from recombinant adeno-associated virus vectors. J Gene Med 2001; 3: 260–270.

    Article  CAS  PubMed  Google Scholar 

  25. Wang L, Dobrzynski E, Schlachterman A, Cao O, Herzog RW . Systemic protein delivery by muscle-gene transfer is limited by a local immune response. Blood 2005; 105: 4226–4234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Manno CS, Pierce GF, Arruda VR, Glader B, Ragni M, Rasko JJ et al. Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat Med 2006; 12: 342–347.

    Article  CAS  PubMed  Google Scholar 

  27. Smith SC, Allen PM . Neutralization of endogenous tumor necrosis factor ameliorates the severity of myosin-induced myocarditis. Circ Res 1992; 70: 856–863.

    Article  CAS  PubMed  Google Scholar 

  28. Yamada T, Matsumori A, Sasayama S . Therapeutic effect of anti-tumor necrosis factor-alpha antibody on the murine model of viral myocarditis induced by encephalomyocarditis virus. Circulation 1994; 89: 846–851.

    Article  CAS  PubMed  Google Scholar 

  29. Korth-Bradley JM, Rubin AS, Hanna RK, Simcoe DK, Lebsack ME . The pharmacokinetics of etanercept in healthy volunteers. Ann Pharm 2000; 34: 161–164.

    CAS  Google Scholar 

  30. Kwon HJ, Cote TR, Cuffe MS, Kramer JM, Braun MM . Case reports of heart failure after therapy with a tumor necrosis factor antagonist. Ann Intern Med 2003; 138: 807–811.

    Article  PubMed  Google Scholar 

  31. Zeltser R, Valle L, Tanck C, Holyst MM, Ritchlin C, Gaspari AA . Clinical, histological, and immunophenotypic characteristics of injection site reactions associated with etanercept: a recombinant tumor necrosis factor alpha receptor: Fc fusion protein. Arch Derm 2001; 137: 893–899.

    CAS  PubMed  Google Scholar 

  32. Herzog RW . Immune responses to AAV capsid: are mice not humans after all? Mol Ther 2007; 15: 649–650.

    Article  CAS  PubMed  Google Scholar 

  33. Jacobs CA, Smith CA . Methods of lowering active TNF-alpha levels in mammals using tumor necrosis factor receptor. US Patent 5: 605–690, US Patent and Trademark Office, Washington DC, 1997.

  34. Xiao X, Li J, Samulski RJ . Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J Virol 1998; 72: 2224–2232.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Bonnie Lemster, Tjendimin Tjandrawan, Jennifer Rager, David Meleason and Michael Murphey-Corb for their contributions in animal procedures and analyses, and Paul Robbins for plasmids encoding TNFRII-Fc. The work was supported by NIH grant U01HL66949.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C F McTiernan.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website (http://www.nature.com/gt)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

McTiernan, C., Mathier, M., Zhu, X. et al. Myocarditis following adeno-associated viral gene expression of human soluble TNF receptor (TNFRII-Fc) in baboon hearts. Gene Ther 14, 1613–1622 (2007). https://doi.org/10.1038/sj.gt.3303020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3303020

Keywords

This article is cited by

Search

Quick links