Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Liver-specific expression of interferon γ following adenoviral gene transfer controls hepatitis B virus replication in mice

Abstract

Interferons control viral replication and the growth of some malignant tumors. Since systemic application may cause severe adverse effects, tissue-specific expression is an attractive alternative. Liver-directed interferon gene therapy offers promising applications such as chronic viral hepatitis B or C or hepatocellular carcinoma and thus needs testing in vivo in suitable animal models. We therefore used the Tet-On system to regulate gene expression in adenoviral vectors, and studied the effect of liver-specific and regulated interferon γ expression in a mouse model of chronic hepatitis B virus (HBV) infection. In a first generation adenoviral vector, genes encoding for firefly luciferase and interferons α, β or γ, respectively, were coexpressed under control of the bidirectional tetracycline-regulated promoter Ptetbi. Liver-specific promoters driving expression of the reverse tetracycline controlled transactivator ensured local expression in the livers of HBV transgenic mice. Following gene transfer, we demonstrated low background, tight regulation and a 1000-fold induction of gene expression by doxycycline. Both genes within the bidirectional transcription unit were expressed simultaneously, and in a liver-specific fashion in cell culture and in living mice. Doxycycline-dependent interferon γ expression effectively controlled HBV replication in mice, but did not eliminate HBV transcripts. This system will help to study the effects of local cytokine expression in mouse disease models in detail.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Guidotti LG et al. Intracellular inactivation of the hepatitis B virus by cytotoxic T lymphocytes. Immunity 1996; 4: 25–36.

    Article  CAS  PubMed  Google Scholar 

  2. Cavanaugh VJ, Guidotti LG, Chisari FV . Interleukin-12 inhibits hepatitis B virus replication in transgenic mice. J Virol 1997; 71: 3236–3243.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Kimura K et al. Interleukin-18 inhibits hepatitis B virus replication in the livers of transgenic mice. J Virol 2002; 76: 10702–10707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Frese M et al. Interferon-gamma inhibits replication of subgenomic and genomic hepatitis C virus RNAs. Hepatology 2002; 35: 694–703.

    Article  CAS  PubMed  Google Scholar 

  5. Protzer U et al. Interferon gene transfer by a hepatitis B virus vector efficiently suppresses wild-type virus infection. Proc Natl Acad Sci USA 1999; 96: 10818–10823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gossen M, Bujard H . Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci USA 1992; 89: 5547–5551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gossen M et al. Transcriptional activation by tetracyclines in mammalian cells. Science 1995; 268: 1766–1769.

    Article  CAS  PubMed  Google Scholar 

  8. Baron U, Freundlieb S, Gossen M, Bujard H . Co-regulation of two gene activities by tetracycline via a bidirectional promoter. Nucleic Acids Res 1995; 23: 3605–3606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kistner A et al. Doxycycline-mediated quantitative and tissue-specific control of gene expression in transgenic mice. Proc Natl Acad Sci USA 1996; 93: 10933–10938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hasan MT et al. Long-term, noninvasive imaging of regulated gene expression in living mice. Genesis 2001; 29: 116–122.

    Article  CAS  PubMed  Google Scholar 

  11. Urlinger S et al. Exploring the sequence space for tetracycline-dependent transcriptional activators: novel mutations yield expanded range and sensitivity. Proc Natl Acad Sci USA 2000; 97: 7963–7968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Baron U, Bujard H . Tet repressor-based system for regulated gene expression in eukaryotic cells: principles and advances. Methods Enzymol 2000; 327: 401–421.

    Article  CAS  PubMed  Google Scholar 

  13. Gossen M, Bujard H . Studying gene function in eukaryotes by conditional gene inactivation. Annu Rev Genet 2002; 36: 153–173.

    Article  CAS  PubMed  Google Scholar 

  14. Molin M et al. Two novel adenovirus vector systems permitting regulated protein expression in gene transfer experiments. J Virol 1998; 72: 8358–8361.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Corti O et al. A single adenovirus vector mediates doxycycline-controlled expression of tyrosine hydroxylase in brain grafts of human neural progenitors. Nat Biotechnol 1999; 17: 349–354.

    Article  CAS  PubMed  Google Scholar 

  16. Rubinchik S et al. Adenoviral vector which delivers FasL-GFP fusion protein regulated by the tet-inducible expression system. Gene Therapy 2000; 7: 875–885.

    Article  CAS  PubMed  Google Scholar 

  17. Aurisicchio L et al. Regulated and prolonged expression of mIFN(alpha) in immunocompetent mice mediated by a helper-dependent adenovirus vector. Gene Therapy 2001; 8: 1817–1825.

    Article  CAS  PubMed  Google Scholar 

  18. Haberman RP, McCown TJ, Samulski RJ . Inducible long-term gene expression in brain with adeno-associated virus gene transfer. Gene Therapy 1998; 5: 1604–1611.

    Article  CAS  PubMed  Google Scholar 

  19. Fitzsimons HL, McKenzie JM, During MJ . Insulators coupled to a minimal bidirectional tet cassette for tight regulation of rAAV-mediated gene transfer in the mammalian brain. Gene Therapy 2001; 8: 1675–1681.

    Article  CAS  PubMed  Google Scholar 

  20. Rendahl KG et al. Tightly regulated long-term erythropoietin expression in vivo using tet-inducible recombinant adeno-associated viral vectors. Hum Gene Ther 2002; 13: 335–342.

    Article  CAS  PubMed  Google Scholar 

  21. Paulus W et al. Self-contained, tetracycline-regulated retroviral vector system for gene delivery to mammalian cells. J Virol 1996; 70: 62–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Hofmann A, Nolan GP, Blau HM . Rapid retroviral delivery of tetracycline-inducible genes in a single autoregulatory cassette. Proc Natl Acad Sci USA 1996; 93: 5185–5190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Reiser J, Lai Z, Zhang XY, Brady RO . Development of multigene and regulated lentivirus vectors. J Virol 2000; 74: 10589–10599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kafri T, van Praag H, Gage FH, Verma IM . Lentiviral vectors: regulated gene expression. Mol Ther 2000; 1: 516–521.

    Article  CAS  PubMed  Google Scholar 

  25. Ho DY, McLaughlin JR, Sapolsky RM . Inducible gene expression from defective herpes simplex virus vectors using the tetracycline-responsive promoter system. Brain Res Mol Brain Res 1996; 41: 200–209.

    Article  CAS  PubMed  Google Scholar 

  26. He TC et al. A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci USA 1998; 95: 2509–2514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Steinwaerder DS, Lieber A . Insulation from viral transcriptional regulatory elements improves inducible transgene expression from adenovirus vectors in vitro and in vivo. Gene Therapy 2000; 7: 556–567.

    Article  CAS  PubMed  Google Scholar 

  28. Rubinchik S et al. Creation of a new transgene cloning site near the right ITR of Ad5 results in reduced enhancer interference with tissue-specific and regulatable promoters. Gene Therapy 2001; 8: 247–253.

    Article  CAS  PubMed  Google Scholar 

  29. Talbot D, Descombes P, Schibler U . The 5′ flanking region of the rat LAP (C/EBP beta) gene can direct high-level, position-independent, copy number-dependent expression in multiple tissues in transgenic mice. Nucleic Acids Res 1994; 22: 756–766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schönig K, Schwenk F, Rajewsky K, Bujard H . Stringent doxycycline dependent control of CRE recombinase in vivo. Nucleic Acids Res 2002; 30: 134.

    Article  Google Scholar 

  31. Costa RH, Grayson DR . Site-directed mutagenesis of hepatocyte nuclear factor (HNF) binding sites in the mouse transthyretin (TTR) promoter reveal synergistic interactions with its enhancer region. Nucleic Acids Res 1991; 19: 4139–4145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schulze-Bergkamen H et al. Primary human hepatocytes - a valuable tool for investigation of apoptosis and hepatitis B virus infection. J Hepatol 2003; 38: 736–744.

    Article  PubMed  Google Scholar 

  33. Gallagher AR et al. Use of the tetracycline system for inducible protein synthesis in the kidney. J Am Soc Nephrol 2003; 14: 2042–2051.

    Article  CAS  PubMed  Google Scholar 

  34. Contag CH et al. Visualizing gene expression in living mammals using a bioluminescent reporter. Photochem Photobiol 1997; 66: 523–531.

    Article  CAS  PubMed  Google Scholar 

  35. Agha-Mohammadi S, Lotze MT . Regulatable systems: applications in gene therapy and replicating viruses. J Clin Invest 2000; 105: 1177–1183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Clackson T . Regulated gene expression systems. Gene Therapy 2000; 7: 120–125.

    Article  CAS  PubMed  Google Scholar 

  37. Ilan Y, Saito H, Thummala NR, Chowdhury NR . Adenovirus-mediated gene therapy of liver diseases. Semin Liver Dis 1999; 19: 49–59.

    Article  CAS  PubMed  Google Scholar 

  38. Breyer B et al. Adenoviral vector-mediated gene transfer for human gene therapy. Curr Gene Ther 2001; 1: 149–162.

    Article  CAS  PubMed  Google Scholar 

  39. Harding TC et al. Switching transgene expression in the brain using an adenoviral tetracycline-regulatable system. Nat Biotechnol 1998; 16: 553–555.

    Article  CAS  PubMed  Google Scholar 

  40. Johansen J et al. Evaluation of Tet-on system to avoid transgene down-regulation in ex vivo gene transfer to the CNS. Gene Therapy 2002; 9: 1291–1301.

    Article  CAS  PubMed  Google Scholar 

  41. Lamartina S et al. Stringent control of gene expression in vivo by using novel doxycycline-dependent trans-activators. Hum Gene Ther 2002; 13: 199–210.

    Article  CAS  PubMed  Google Scholar 

  42. Schönig K, Bujard H . Generating conditional mouse mutants via tetracyclin-controlled gene expression. In: Hofken MH, Dvan Deursen J (eds) Transgenic Mouse – Methods and Protocols. Humana Press Inc.: Totowa, NJ, 2002, pp 69–104.

    Chapter  Google Scholar 

  43. Rang A, Will H . The tetracycline-responsive promoter contains functional interferon-inducible response elements. Nucleic Acids Res 2000; 28: 1120–1125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mazzolini G et al. Genetic heterogeneity in the toxicity to systemic adenoviral gene transfer of interleukin-12. Gene Therapy 2001; 8: 259–267.

    Article  CAS  PubMed  Google Scholar 

  45. Pitzer C et al. In vivo manipulation of interleukin-2 expression by a retroviral tetracycline (tet)-regulated system. Cancer Gene Ther 1999; 6: 139–146.

    Article  CAS  PubMed  Google Scholar 

  46. Nakagawa S, Massie B, Hawley RG . Tetracycline-regulatable adenovirus vectors: pharmacologic properties and clinical potential. Eur J Pharm Sci 2001; 13: 53–60.

    Article  CAS  PubMed  Google Scholar 

  47. Cavanaugh VJ, Guidotti LG, Chisari FV . Inhibition of hepatitis B virus replication during adenovirus and cytomegalovirus infections in transgenic mice. J Virol 1998; 72: 2630–2637.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Klöcker U, Schultz U, Schaller H, Protzer U . Endotoxin stimulates liver macrophages to release mediators that inhibit an early step in hepadnavirus replication. J Virol 2000; 74: 5525–5533.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Uprichard SL, Wieland SF, Althage A, Chisari FV . Transcriptional and posttranscriptional control of hepatitis B virus gene expression. Proc Natl Acad Sci USA 2003; 100: 1310–1315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wieland SF, Guidotti LG, Chisari FV . Intrahepatic induction of alpha/beta interferon eliminates viral RNA-containing capsids in hepatitis B virus transgenic mice. J Virol 2000; 74: 4165–4173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sprinzl MF, Oberwinkler H, Schaller H, Protzer U . Transfer of hepatitis B virus genome by adenovirus vectors into cultured cells and mice: crossing the species barrier. J Virol 2001; 75: 5108–5118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Deres K et al. Inhibition of hepatitis B virus replication by drug-induced depletion of nucleocapsids. Science 2003; 299: 893–896.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the animal care unit of the Center of Molecular Biology Heidelberg for their highly motivated animal care, R Eilers for technical assistance, and U Baron for help with setting up the Tet-system. We thank H-G Kräusslich and H Schaller for critical discussion of the data and for continuous support. This work was supported by grant PR 618/2 from the Deutsche Forschungs-gemeinschaft to UP and by a grant from the Dr Mildred Scheel Stiftung to PS.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dumortier, J., Schönig, K., Oberwinkler, H. et al. Liver-specific expression of interferon γ following adenoviral gene transfer controls hepatitis B virus replication in mice. Gene Ther 12, 668–677 (2005). https://doi.org/10.1038/sj.gt.3302449

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302449

Keywords

This article is cited by

Search

Quick links