Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Protective effects of IL-1Ra or vIL-10 gene transfer on a murine model of wear debris-induced osteolysis

Abstract

The current study evaluated the protective effects of anti-inflammatory cytokine gene transfer on osteolysis provoked by orthopedic biomaterial particles using a murine model of inflammatory bone loss. A section of bone was surgically implanted into an air pouch established on a syngeneic recipient mouse. Inflammation was provoked by introduction of ultra-high-molecular-weight polyethylene (UHMWPE) particles into the pouch, and retroviruses encoding for interleukin-1 receptor antagonist (hIL-1Ra), viral interleukin-10 (vIL-10), or LacZ genes were injected. Pouch fluid and tissue were harvested 7 days later for histological and molecular analyses. The results indicated that IL-1Ra or vIL-10 gene transfer significantly inhibited IL-1β and tumor necrosis factor (TNF) expression at both mRNA and protein levels. There were significantly lower mRNA expressions of calcitonin receptor and cathepsin K in RNA isolated from hIL-1Ra- or vIL-10-transduced pouches than LacZ-transduced and virus-free controls. Both anti-inflammatory cytokine gene transfers significantly reduced the mRNA expression of M-CSF (70–90%) and RANK (>65%) in comparison with LacZ- and virus-free controls. Histological examination showed that hIL-1Ra or vIL-10 gene transfer dramatically abolished UHMWPE-induced inflammatory cellular infiltration and bone pit erosion compared to LacZ-transduced and virus-free controls. Histochemical staining revealed significantly fewer osteoclast-like cells in samples treated with IL-1Ra or vIL-10 gene transfer. In addition, bone collagen content was markedly preserved in the groups with anti-inflammatory cytokine gene transfers compared with the other two groups. Overall, retrovirus-mediated hIL-1Ra or vIL-10 gene transfer effectively protected against UHMWPE-particle-induced bone resorption, probably due to the inhibition of IL-1/TNF-induced M-CSF production and the consequent osteoclast recruitment and maturation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Harris WH . Wear and periprosthetic osteolysis: the problem. Clin Orthop 2001: 66–70.

    Article  Google Scholar 

  2. Sabokbar A et al. Human arthroplasty derived macrophages differentiate into osteoclastic bone resorbing cells. Ann Rheum Dis 1997; 56: 414–420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Neale SD et al. Macrophage colony-stimulating factor and interleukin-6 release by periprosthetic cells stimulates osteoclast formation and bone resorption. J Orthop Res 1999; 17: 686–694.

    Article  CAS  PubMed  Google Scholar 

  4. Wooley PH et al. Cellular immune responses to orthopaedic implant materials following cemented total joint replacement. J Orthop Res 1997; 15: 874–880.

    Article  CAS  PubMed  Google Scholar 

  5. Chiba J et al. The characterization of cytokines in the interface tissue obtained from failed cementless total hip arthroplasty with and without femoral osteolysis. Clin Orthop 1994: 304–312.

  6. Jones LC, Frondoza C, Hungerford DS . Immunohistochemical evaluation of interface membranes from failed cemented and uncemented acetabular components. J Biomed Mater Res 1999; 48: 889–898.

    Article  CAS  PubMed  Google Scholar 

  7. Glant TT et al. Bone resorption activity of particulate-stimulated macrophages. J Bone Miner Res 1993; 8: 1071–1079.

    Article  CAS  PubMed  Google Scholar 

  8. Jiranek WA et al. Production of cytokines around loosened cemented acetabular components. Analysis with immunohistochemical techniques and in situ hybridization [see comments]. J Bone Joint Surg Am 1993; 75: 863–879.

    Article  CAS  PubMed  Google Scholar 

  9. Stea S et al. Cytokines and osteolysis around total hip prostheses. Cytokine 2000; 12: 1575–1579.

    Article  CAS  PubMed  Google Scholar 

  10. Sud S et al. Effects of cytokine gene therapy on particulate-induced inflammation in the murine air pouch. Inflammation 2001; 25: 361–372.

    Article  CAS  PubMed  Google Scholar 

  11. Yang S et al. IL-1Ra and vIL-10 gene transfer using retroviral vectors ameliorates particle-associated inflammation in the murine air pouch model. Inflamm Res 2002; 51: 342–350.

    Article  CAS  PubMed  Google Scholar 

  12. Yang SY et al. Adeno-associated virus-mediated osteoprotegerin gene transfer protects against particulate polyethylene-induced osteolysis in a murine model. Arthritis Rheum 2002; 46: 2514–2523.

    Article  CAS  PubMed  Google Scholar 

  13. Yang SY et al. A novel model for osteolysis in aseptic loosening; femoral implants within the inflammatory murine air pouch. Arthritis Rheum 2000; 43: S884.

    Google Scholar 

  14. Wooley PH et al. Inflammatory responses to orthopaedic biomaterials in the murine air pouch. Biomaterials 2002; 23: 517–526.

    Article  CAS  PubMed  Google Scholar 

  15. Gelb H et al. In vivo inflammatory response to polymethylmethacrylate particulate debris: effect of size, morphology, and surface area [published erratum appears in J Orthop Res 1994 Jul;12(4):598]. J Orthop Res 1994; 12: 83–92.

    Article  CAS  PubMed  Google Scholar 

  16. Bottomley KM et al. A modified mouse air pouch model for evaluating the effects of compounds on granuloma induced cartilage degradation. Br J Pharmacol 1988; 93: 627–635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nita I et al. Direct gene delivery to synovium. An evaluation of potential vectors in vitro and in vivo. Arthritis Rheum 1996; 39: 820–828.

    Article  CAS  PubMed  Google Scholar 

  18. Qin L et al. Retrovirus-mediated transfer of viral IL-10 gene prolongs murine cardiac allograft survival. J Immunol 1996; 156: 2316–2323.

    CAS  PubMed  Google Scholar 

  19. Ren W, Yang SY, Wooley PH . A novel model of orthopaedic wear debris-associated osteolysis. J Orthop Res 2003, (in press).

  20. Bauer TW . Particles and periimplant bone resorption. Clin Orthop 2002; 405: 138–143.

    Article  Google Scholar 

  21. Schwarz EM et al. Tumor necrosis factor-alpha/nuclear transcription factor-kappaB signaling in periprosthetic osteolysis. J Orthop Res 2000; 18: 472–480.

    Article  CAS  PubMed  Google Scholar 

  22. Carmody EE et al. Viral interleukin-10 gene inhibition of inflammation, osteoclastogenesis, and bone resorption in response to titanium particles. Arthritis Rheum 2002; 46: 1298–1308.

    Article  CAS  PubMed  Google Scholar 

  23. Evans CH et al. Gene therapy for autoimmune disorders. J Clin Immunol 2000; 20: 334–346.

    Article  CAS  PubMed  Google Scholar 

  24. Goater JJ et al. Efficacy of ex vivo OPG gene therapy in preventing wear debris induced osteolysis. J Orthop Res 2002; 20: 169–173.

    Article  CAS  PubMed  Google Scholar 

  25. Evans CH et al. Gene therapy for rheumatic diseases. Arthritis Rheum 1999; 42: 1–16.

    Article  CAS  PubMed  Google Scholar 

  26. Lubberts E et al. IL-4 gene therapy for collagen arthritis suppresses synovial IL-17 and osteoprotegerin ligand and prevents bone erosion. J Clin Invest 2000; 105: 1697–1710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gowen M et al. An interleukin 1 like factor stimulates bone resorption in vitro. Nature 1983; 306: 378–380.

    Article  CAS  PubMed  Google Scholar 

  28. Merkel KD et al. Tumor necrosis factor-alpha mediates orthopedic implant osteolysis. Am J Pathol 1999; 154: 203–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Toumbis CA et al. Total joint arthroplasty and the immune response. Semin Arthritis Rheum 1997; 27: 44–47.

    Article  CAS  PubMed  Google Scholar 

  30. Algan SM, Purdon M, Horowitz SM . Role of tumor necrosis factor alpha in particulate-induced bone resorption. J Orthop Res 1996; 14: 30–35.

    Article  CAS  PubMed  Google Scholar 

  31. Wooley PH et al. The effect of an interleukin-1 receptor antagonist protein on type II collagen-induced arthritis and antigen-induced arthritis in mice. Arthritis Rheum 1993; 36: 1305–1314.

    Article  CAS  PubMed  Google Scholar 

  32. Joosten LA et al. Protection against cartilage and bone destruction by systemic interleukin-4 treatment in established murine type II collagen-induced arthritis. Arthritis Res 1999; 1: 81–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. van de Loo FA, Den Berg WB . Gene therapy for rheumatoid arthritis. Lessons from animal models, including studies on interleukin-4, interleukin-10, and interleukin-1 receptor antagonist as potential disease modulators. Rheum Dis Clin N Am 2002; 28: 127–149.

    Article  Google Scholar 

  34. Henderson B . Therapeutic modulation of cytokines. Ann Rheum Dis 1995; 54: 519–523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Trindade MC et al. Interleukin-10 inhibits polymethylmethacrylate particle induced interleukin-6 and tumor necrosis factor-alpha release by human monocyte/macrophages in vitro. Biomaterials 2001; 22: 2067–2073.

    Article  CAS  PubMed  Google Scholar 

  36. Roodman GD . Advances in bone biology: the osteoclast. Endocr Rev 1996; 17: 308–332.

    CAS  PubMed  Google Scholar 

  37. Pandey R et al. Arthroplasty implant biomaterial particle associated macrophages differentiate into lacunar bone resorbing cells. Ann Rheum Dis 1996; 55: 388–395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang W et al. Biomaterial particle phagocytosis by bone-resorbing osteoclasts. J Bone Joint Surg Br 1997; 79: 849–856.

    Article  CAS  PubMed  Google Scholar 

  39. Greenfield EM et al. The role of osteoclast differentiation in aseptic loosening. J Orthop Res 2002; 20: 1–8.

    Article  CAS  PubMed  Google Scholar 

  40. Yoshida H et al. The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature 1990; 345: 442–444.

    Article  CAS  PubMed  Google Scholar 

  41. Takahashi N, Udagawa N, Suda T . A new member of tumor necrosis factor ligand family, ODF/OPGL/TRANCE/RANKL, regulates osteoclast differentiation and function. Biochem Biophys Res Commun 1999; 256: 449–455.

    Article  CAS  PubMed  Google Scholar 

  42. Yasuda H et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA 1998; 95: 3597–3602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Azuma Y et al. Tumor necrosis factor-alpha induces differentiation of and bone resorption by osteoclasts. J Biol Chem 2000; 275: 4858–4864.

    Article  CAS  PubMed  Google Scholar 

  44. Xu JW et al. Macrophage-colony stimulating factor (M-CSF) is increased in the synovial-like membrane of the periprosthetic tissues in the aseptic loosening of total hip replacement (THR). Clin Rheumatol 1997; 16: 243–248.

    Article  CAS  PubMed  Google Scholar 

  45. Campbell IK, Ianches G, Hamilton JA . Production of macrophage colony-stimulating factor (M-CSF) by human articular cartilage and chondrocytes. Modulation by interleukin-1 and tumor necrosis factor alpha. Biochim Biophys Acta 1993; 1182: 57–63.

    Article  CAS  PubMed  Google Scholar 

  46. Hamilton JA, Filonzi EL, Ianches G . Regulation of macrophage colony-stimulating factor (M-CSF) production in cultured human synovial fibroblasts. Growth Factors 1993; 9: 157–165.

    Article  CAS  PubMed  Google Scholar 

  47. Kong YY et al. Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature 1999; 402: 304–309.

    Article  CAS  PubMed  Google Scholar 

  48. PE Applied Biosystems. TagMan Cytokine Gene Expression Plate I. Protocol 1998; P/N 4304671: 37–53.

  49. Grynkiewicz G, Poenie M, Tsien RY . A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 1985; 260: 3440–3450.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, SY., Wu, B., Mayton, L. et al. Protective effects of IL-1Ra or vIL-10 gene transfer on a murine model of wear debris-induced osteolysis. Gene Ther 11, 483–491 (2004). https://doi.org/10.1038/sj.gt.3302192

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302192

Keywords

This article is cited by

Search

Quick links