Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Secretory heat-shock protein as a dendritic cell-targeting molecule: a new strategy to enhance the potency of genetic vaccines

Abstract

DNA vaccines are an appealing strategy for inducing cytotoxic T-lymphocyte and antibody responses against tumor cells as well as infectious agents. Dendritic cells (DCs) play a critical role in inducing immune responses, but their potential is not fully utilized in the DNA vaccine setting since they take up only a minor fraction of the injected DNA. Here we describe a novel DNA vaccination strategy based on the targeting of a modified tumor-associated antigen, the human papilloma virus (HPV) type 16 E7 protein, to DCs by a heat-shock protein (HSP) to enhance antigen presentation and immune responses. Specifically, a chimerical HPV-E7 and HSP70 fusion gene preceded with a leader sequence was constructed. When mice were immunized with this construct, the DNA is taken up by various types of cells, which then produce and secrete an HPV-E7–HSP70 fusion protein that is targeted to DCs by the HSP70 portion of the chimerical molecule for antigen presentation. In studies to test the efficacy of this strategy, we demonstrated that DNA vaccination with this secretory HPV-E7–HSP70 construct strongly enhanced an antigen-specific CD8+ T-cell response as well as a specific B-cell response in mice. Furthermore, this immunization approach not only protected mice against lethal challenge with an HPV E7-expressing tumor line (TC-1), but also showed a therapeutic effect against established tumors. The results of this study indicate that secretory HSPs can be broadly used to target tumor-associated antigens to DCs to enhance antigen-specific immune responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Wolff JA et al. Direct gene transfer into mouse muscle in vivo. Science 1990; 247: 1465–1468.

    Article  CAS  PubMed  Google Scholar 

  2. Andree C et al. In vivo transfer and expression of a human epidermal growth factor gene accelerates wound repair. Proc Natl Acad Sci USA 1994; 91: 12188–12192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Corr M et al. Gene vaccination with naked plasmid DNA: mechanism of CTL priming. J Exp Med 1996; 184: 1555–1560.

    Article  CAS  PubMed  Google Scholar 

  4. Doe B et al. Induction of cytotoxic T lymphocytes by intramuscular immunization with plasmid DNA is facilitated by bone marrow-derived cells. Proc Natl Acad Sci USA 1996; 93: 8578–8583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Akbari O et al. DNA vaccination: transfection and activation of dendritic cells as key events for immunity. J Exp Med 1999; 189: 169–178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Porgador A et al. Predominant role for directly transfected dendritic cells in antigen presentation to CD8+ T cells after gene gun immunization. J Exp Med 1998; 188: 1075–1082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ulmer JB et al. Generation of MHC class I-restricted cytotoxic T lymphocytes by expression of a viral protein in muscle cells: antigen presentation by non-muscle cells. Immunology 1996; 89: 59–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fu TM et al. Priming of cytotoxic T lymphocytes by DNA vaccines: requirement for professional antigen presenting cells and evidence for antigen transfer from myocytes. Mol Med 1997; 3: 362–371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ulmer JB et al. Expression of a viral protein by muscle cells in vivo induces protective cell-mediated immunity. Vaccine 1997; 15: 839–841.

    Article  CAS  PubMed  Google Scholar 

  10. Torres CA et al. Differential dependence on target site tissue for gene gun and intramuscular DNA immunizations. J Immunol 1997; 158: 4529–4532.

    CAS  PubMed  Google Scholar 

  11. Klinman DM et al. Contribution of cells at the site of DNA vaccination to the generation of antigen-specific immunity and memory. J Immunol 1998; 160: 2388–2392.

    CAS  PubMed  Google Scholar 

  12. Kumaraguru U et al. Involvement of an ATP-dependent peptide chaperone in cross-presentation after DNA immunization. J Immunol 2000; 165: 750–759.

    Article  CAS  PubMed  Google Scholar 

  13. Somersan S et al. Primary tumor tissue lysates are enriched in heat shock proteins and induce the maturation of human dendritic cells. J Immunol 2001; 167: 4844–4852.

    Article  CAS  PubMed  Google Scholar 

  14. Basu S et al. Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway. Int Immunol 2000; 12: 1539–1546.

    Article  CAS  PubMed  Google Scholar 

  15. Kuppner MC et al. The role of heat shock protein (hsp70) in dendritic cell maturation: hsp70 induces the maturation of immature dendritic cells but reduces DC differentiation from monocyte precursors. Eur J Immunol 2001; 31: 1602–1609.

    Article  CAS  PubMed  Google Scholar 

  16. Breloer M, Fleischer B, von Bonin A . In vivo and in vitro activation of T cells after administration of Ag-negative heat shock proteins. J Immunol 1999; 162: 3141–3147.

    CAS  PubMed  Google Scholar 

  17. Panjwani NN, Popova L, Srivastava PK . Heat shock proteins gp96 and hsp70 activate the release of nitric oxide by APCs. J Immunol 2002; 168: 2997–3003.

    Article  CAS  PubMed  Google Scholar 

  18. Asea A et al. HSP70 stimulates cytokine production through a CD14-dependent pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med 2000; 6: 435–442.

    Article  CAS  PubMed  Google Scholar 

  19. Vabulas RM et al. HSP70 as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway. J Biol Chem 2002; 277: 15107–15112.

    Article  CAS  PubMed  Google Scholar 

  20. Wallin RP et al. Heat-shock proteins as activators of the innate immune system. Trends Immunol 2002; 23: 130–135.

    Article  CAS  PubMed  Google Scholar 

  21. Bausinger H et al. Endotoxin-free heat-shock protein 70 fails to induce APC activation. Eur J Immunol 2002; 32: 3708–3713.

    Article  CAS  PubMed  Google Scholar 

  22. Arnold-Schild D et al. Cutting edge: receptor-mediated endocytosis of heat shock proteins by professional antigen-presenting cells. J Immunol 1999; 162: 3757–3760.

    CAS  PubMed  Google Scholar 

  23. Basu S et al. CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity 2001; 14: 303–313.

    Article  CAS  PubMed  Google Scholar 

  24. Castellino F et al. Receptor-mediated uptake of antigen/heat shock protein complexes results in major histocompatibility complex class I antigen presentation via two distinct processing pathways. J Exp Med 2000; 191: 1957–1964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lipsker D et al. Heat shock proteins 70 and 60 share common receptors which are expressed on human monocyte-derived but not epidermal dendritic cells. Eur J Immunol 2002; 32: 322–332.

    Article  CAS  PubMed  Google Scholar 

  26. Blachere NE et al. Heat shock protein-peptide complexes, reconstituted in vitro, elicit peptide-specific cytotoxic T lymphocyte response and tumor immunity. J Exp Med 1997; 186: 1315–1322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ciupitu AM et al. Immunization with a lymphocytic choriomeningitis virus peptide mixed with heat shock protein 70 results in protective antiviral immunity and specific cytotoxic T lymphocytes. J Exp Med 1998; 187: 685–691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Moroi Y et al. Induction of cellular immunity by immunization with novel hybrid peptides complexed to heat shock protein 70. Proc Natl Acad Sci USA 2000; 97: 3485–3490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Navaratnam M et al. Heat shock protein-peptide complexes elicit cytotoxic T-lymphocyte and antibody responses specific for bovine herpesvirus 1. Vaccine 2001; 19: 1425–1434.

    Article  CAS  PubMed  Google Scholar 

  30. Suto R, Srivastava PK . A mechanism for the specific immunogenicity of heat shock protein-chaperoned peptides. Science 1995; 269: 1585–1588.

    Article  CAS  PubMed  Google Scholar 

  31. Castelli C et al. Human heat shock protein 70 peptide complexes specifically activate antimelanoma T cells. Cancer Res 2001; 61: 222–227.

    CAS  PubMed  Google Scholar 

  32. Chandawarkar RY, Wagh MS, Srivastava PK . The dual nature of specific immunological activity of tumor-derived gp96 preparations. J Exp Med 1999; 189: 1437–1442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ciupitu AM et al. Immunization with heat shock protein 70 from methylcholanthrene-induced sarcomas induces tumor protection correlating with in vitro T cell responses. Cancer Immunol Immunother 2002; 51: 163–170.

    Article  CAS  PubMed  Google Scholar 

  34. Janetzki S et al. Immunization of cancer patients with autologous cancer-derived heat shock protein gp96 preparations: a pilot study. Int J Cancer 2000; 88: 232–238.

    Article  CAS  PubMed  Google Scholar 

  35. Tamura Y et al. Immunotherapy of tumors with autologous tumor-derived heat shock protein preparations. Science 1997; 278: 117–120; (erratum appears in Science 1999; 283: preceding 1119).

    Article  CAS  PubMed  Google Scholar 

  36. Suzue K, Young RA . Adjuvant-free hsp70 fusion protein system elicits humoral and cellular immune responses to HIV-1 p24. J Immunol 1996; 156: 873–879.

    CAS  PubMed  Google Scholar 

  37. Suzue K et al. Heat shock fusion proteins as vehicles for antigen delivery into the major histocompatibility complex class I presentation pathway. Proc Natl Acad Sci USA 1997; 94: 13146–13151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chu NR et al. Immunotherapy of a human papillomavirus (HPV) type 16 E7-expressing tumour by administration of fusion protein comprising Mycobacterium bovis bacille Calmette–Guerin (BCG) hsp65 and HPV16 E7. Clin Exp Immunol 2000; 121: 216–225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Huang Q et al. In vivo cytotoxic T lymphocyte elicitation by mycobacterial heat shock protein 70 fusion proteins maps to a discrete domain and is CD4(+) T cell independent. J Exp Med 2000; 191: 403–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Udono H et al. Generation of cytotoxic T lymphocytes by MHC class I ligands fused to heat shock cognate protein 70. Int Immunol 2001; 13: 1233–1242.

    Article  CAS  PubMed  Google Scholar 

  41. Lin KY et al. Treatment of established tumors with a novel vaccine that enhances major histocompatibility class II presentation of tumor antigen. Cancer Res 1996; 56: 21–26.

    CAS  PubMed  Google Scholar 

  42. Feltkamp MC et al. Vaccination with cytotoxic T lymphocyte epitope-containing peptide protects against a tumor induced by human papillomavirus type 16-transformed cells. Eur J Immunol 1993; 23: 2242–2249.

    Article  CAS  PubMed  Google Scholar 

  43. Tindle RW et al. A ‘public’ T-helper epitope of the E7 transforming protein of human papillomavirus 16 provides cognate help for several E7 B-cell epitopes from cervical cancer-associated human papillomavirus genotypes. Proc Natl Acad Sci USA 1991; 88: 5887–5891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Becker T, Hartl FU, Wieland F . CD40, an extracellular receptor for binding and uptake of Hsp70–peptide complexes. J Cell Biol 2002; 158: 1277–1285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Anthony LS et al. Priming of CD8+ CTL effector cells in mice by immunization with a stress protein–influenza virus nucleoprotein fusion molecule. Vaccine 1999; 17: 373–383.

    Article  CAS  PubMed  Google Scholar 

  46. Cheng WF et al. Enhancement of Sindbis virus self-replicating RNA vaccine potency by linkage of Mycobacterium tuberculosis heat shock protein 70 gene to an antigen gene. J Immunol 2001; 166: 6218–6226.

    Article  CAS  PubMed  Google Scholar 

  47. Hsu KF et al. Enhancement of suicidal DNA vaccine potency by linking Mycobacterium tuberculosis heat shock protein 70 to an antigen. Gene Therapy 2001; 8: 376–383.

    Article  CAS  PubMed  Google Scholar 

  48. Wei Y et al. Induction of autologous tumor killing by heat treatment of fresh human tumor cells: involvement of gamma delta T cells and heat shock protein 70. Cancer Res 1996; 56: 1104–1110.

    CAS  PubMed  Google Scholar 

  49. Chen CH et al. Enhancement of DNA vaccine potency by linkage of antigen gene to an HSP70 gene. Cancer Res 2000; 60: 1035–1042.

    CAS  PubMed  Google Scholar 

  50. Liu DW et al. Recombinant adeno-associated virus expressing human papillomavirus type 16 E7 peptide DNA fused with heat shock protein DNA as a potential vaccine for cervical cancer. J Virol 2000; 74: 2888–2894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Young RA . Stress proteins and immunology. Annu Rev Immunol 1990; 8: 401–420.

    Article  CAS  PubMed  Google Scholar 

  52. Salvetti M et al. The immune response to mycobacterial 70-kDa heat shock proteins frequently involves autoreactive T cells and is quantitatively disregulated in multiple sclerosis. J Neuroimmunol 1996; 65: 143–153.

    Article  CAS  PubMed  Google Scholar 

  53. Steinhoff U et al. Autoimmune intestinal pathology induced by hsp60-specific CD8T cells. Immunity 1999; 11: 349–358.

    Article  CAS  PubMed  Google Scholar 

  54. Dyson N et al. The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 1989; 243: 934–937.

    Article  CAS  PubMed  Google Scholar 

  55. Berezutskaya E, Bagchi S . The human papillomavirus E7 oncoprotein functionally interacts with the S4 subunit of the 26 S proteasome. J Biol Chem 1997; 272: 30135–30140.

    Article  CAS  PubMed  Google Scholar 

  56. Smahel M et al. Modified HPV16 E7 genes as DNA vaccine against E7-containing oncogenic cells. Virology 2001; 281: 231–238.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Rana Singh, Wenhong Ren and Lisa Rollins for assistance and suggestion and Sylvia Janetzki (ZellNet) for help with the ELISPOTs. This work was supported by the NIH Grants (R01 AI48480 and 48711).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S-Y Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hauser, H., Shen, L., Gu, QL. et al. Secretory heat-shock protein as a dendritic cell-targeting molecule: a new strategy to enhance the potency of genetic vaccines. Gene Ther 11, 924–932 (2004). https://doi.org/10.1038/sj.gt.3302160

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302160

Keywords

This article is cited by

Search

Quick links