Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Acquired Diseases
  • Published:

Quantitation of HSV mass distribution in a rodent brain tumor model

Abstract

A number of different viral vectors have been used for gene therapy of tumors, with many more under construction, ultimately designed to improve tumor targeting and transduction efficiency. It has become apparent that insufficient viral delivery can be a key limitation to treatment efficacy. We have studied the in vivo mass distribution of a herpes simplex virus type 1 (HSV) vector, hrR3, by radiolabeling it with 111in-oxine. the virus was administered to intracerebral 9l glioma bearing fisher (f-344) rats by intracarotid and intratumoral injection. the blood half-life of the virus was 1 min (fast component, 10% contribution) and 180 min (slow component, 90% contribution). approximately 20% of activity had been excreted by 24 h. with intracarotid injection, the total amount of virus that accumulated in tumor was 0.10 ± 0.07% of the injected dose (id)/g at 1 h and 0.19 ± 0.01% id/g at 24 h. by comparison, co-injection of rmp-7, a synthetic bradykinin analog, with the virus, resulted in slightly increased tumor delivery of 0.17 ± 0.10% id/g (p 0.05) at 1 h. the 1 h organ distribution after intra-arterial injection (%id/organ) was as follows: liver 27.3 ± 2.86%, lung 2.10 ± 0.68% and kidney 1.78 ± 1.60% with lesser amounts in other organs. when virus was injected directly into the tumor, 71% of virus remained in tumor at 24 h (590 ± 212 %id/g, consistent with the small tumor mass containing most of the virus) with the following distribution regions: tumor > border zone > normal brain (99:40:1). These studies are the first quantitative mass distribution studies of HSV vectors in an experimental brain tumor model. Localization and quantitation of viral accumulation in vivo will enable detailed analysis of viral and organ interactions critical for advancing the therapeutic use of vectors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Sokol DL, Gewirtz AM . Gene therapy: basic concepts and recent advances Crit Rev Eukary Gene Exp 1996 6: 29–57

    Article  CAS  Google Scholar 

  2. Roth JA, Cristiano RJ . Gene therapy for cancer: what have we done and where are we going? J Nat Cancer Inst 1997 89: 21–39

    Article  CAS  PubMed  Google Scholar 

  3. Dubowchik GM, Walker MA . Receptor-mediated and enzyme-dependent targeting of cytotoxic anticancer drugs Pharmacol Ther 1999 83: 67–123

    Article  CAS  PubMed  Google Scholar 

  4. Stewart AK et al. Engraftment of gene-marked hematopoietic progenitors in myeloma patients after transplant of autologous long-term marrow cultures Hum Gene Ther 1999 10: 1953–1964

    Article  CAS  PubMed  Google Scholar 

  5. Andreansky SS et al. The application of genetically engineered herpes simplex viruses to the treatment of experimental brain tumors Proc Natl Acad Sci USA 1996 93: 11313–11318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bilbao G et al. Adenoviral/retroviral vector chimeras: a novel strategy to achieve high- efficiency stable transduction in vivo FASEB J 1997 11: 624–634

    Article  CAS  PubMed  Google Scholar 

  7. Jacoby DR, Fraefel C, Breakefield XO . Hybrid vectors: a new generation of virus-based vectors designed to control the cellular fate of delivered genes (editorial) Gene Therapy 1997 4: 1281–1283

    Article  CAS  PubMed  Google Scholar 

  8. Bilbao G, Gomez-Navarro J, Curiel DT . Targeted adenoviral vectors for cancer gene therapy Adv Exp Med Biol 1998 451: 365–374

    Article  CAS  PubMed  Google Scholar 

  9. Pechan PA et al. A novel ‘piggyback’ packaging system for herpes simplex virus amplicon vectors Hum Gene Ther 1996 7: 2003–2013

    Article  CAS  PubMed  Google Scholar 

  10. Johnston KM et al. HSV/AAV hybrid amplicon vectors extend transgene expression in human glioma cells Hum Gene Ther 1997 8: 359–370

    Article  CAS  PubMed  Google Scholar 

  11. Schellingerhout D et al. Mapping the in vivo distribution of herpes simplex virions Hum Gene Ther 1998 9: 1543–1549

    Article  CAS  PubMed  Google Scholar 

  12. Zinn KR et al. Imaging and tissue biodistribution of 99mTc-labeled adenovirus knob (serotype 5) Gene Therapy 1998 5: 798–808

    Article  CAS  PubMed  Google Scholar 

  13. Bartus RT et al. Controlled modulation of BBB permeability using the bradykinin agonist, RMP-7 Exp Neurol 1996 142: 14–28

    Article  CAS  PubMed  Google Scholar 

  14. Moore A et al. Novel gliosarcoma cell line expressing green fluorescent protein: a model for quantitative assessment of angiogenesis Microvasc Res 1998 56: 145–153

    Article  CAS  PubMed  Google Scholar 

  15. Bashir R, Hochberg F, Oot R . Regrowth patterns of glioblastoma multiforme related to planning of interstitial brachytherapy radiation fields Neurosurgery 1988 23: 27–30

    Article  CAS  PubMed  Google Scholar 

  16. Kramm CM et al. Gene therapy for brain tumors Brain Pathol 1995 5: 345–381

    Article  CAS  PubMed  Google Scholar 

  17. Breakefield XO et al. Herpes simplex virus vectors for tumor therapy. In: Sobel RE, Scanlon KJ (eds) The Internet Book of Gene Therapy: Cancer Gene Therapeutics Appleton and Lange: Stanford 1995 41–59

    Google Scholar 

  18. Hunter W, Rabkin S, Martuza R . Brain tumor therapy using genetically engineered replication-competent virus. In: Kaplitt MG, Leowy AD (eds) Viral Vectors: Gene therapy and Neuroscience Applications Academic Press: San Diego 1995 260–274

    Google Scholar 

  19. Rainov NG et al. Intra-arterial virus and nonvirus vector-mediated gene transfer to experimental rat brain tumors Front Radiat Ther Oncol 1999 33: 227–240

    Article  CAS  PubMed  Google Scholar 

  20. Hoshino T . A commentary on the biology and growth kinetics of low-grade and high-grade gliomas J Neurosurg 1984 61: 895–900

    Article  CAS  PubMed  Google Scholar 

  21. Jain RK . Delivery of molecular medicine to solid tumors Science 1996 271: 1079–1080

    Article  CAS  PubMed  Google Scholar 

  22. Barnett FH et al. Selective delivery of herpes virus vectors to ex-perimental brain tumors using RMP-7 Cancer Gene Ther 1999 6: 14–20

    Article  CAS  PubMed  Google Scholar 

  23. Bartus RT et al. Permeability of the blood–brain barrier by the bradykinin agonist, RMP-7: evidence for a sensitive, autoregulated, receptor-mediated system Immunopharmacology 1996 33: 270–278

    Article  CAS  PubMed  Google Scholar 

  24. Black KL et al. Intracarotid infusion of RMP-7, a bradykinin analog, and transport of gallium-68 ethylenediamine tetraacetic acid into human gliomas J Neurosurg 1997 86: 603–609

    Article  CAS  PubMed  Google Scholar 

  25. Thomas GR, Thiemermann C, Walder C, Vane JR . The effects of endothelium-dependent vasodilators on cardiac output and their distribution in the anaesthetized rat: a comparison with sodium nitroprusside Br J Pharmacol 1988 95: 986–992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jain RK . 1995 Whitaker Lecture: delivery of molecules, particles, and cells to solid tumors Ann Biomed Eng 1996 24: 457–473

    Article  CAS  PubMed  Google Scholar 

  27. Yuan F et al. Time-dependent vascular regression and permeability changes in established human tumor xenografts induced by an anti-vascular endothelial growth factor/vascular permeability factor antibody Proc Nat Acad Sci USA 1996 93: 14765–14770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Helmlinger G, Yuan F, Dellian M, Jain RK . Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation Nature Med 1997 3: 177–182

    Article  CAS  PubMed  Google Scholar 

  29. Wickham TJ, Haskard D, Segal D, Kovesdi I . Targeting endothelium for gene therapy via receptors up-regulated during angiogenesis and inflammation Cancer Immunol Immunother 1997 45: 149–151

    Article  CAS  PubMed  Google Scholar 

  30. McDonald DM, Munn L, Jain RK . Vasculogenic mimicry: how convincing, how novel, and how significant? Am J Pathol 2000 156: 383–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ikeda K et al. Oncolytic virus therapy of multiple tumors in the brain requires suppression of innate and elicited antiviral responses Nature Med 1999 5: 881–887

    Article  CAS  PubMed  Google Scholar 

  32. Mayerhofer R, Araki K, Szalay AA . Monitoring of spatial expression of firefly luciferase in transformed zebrafish J Biolumin Chemilumin 1995 10: 271–275

    Article  CAS  PubMed  Google Scholar 

  33. Aboody-Guterman KS et al. Green fluorescent protein as a reporter for retrovirus and helper virus-free HSV-1 amplicon vector-mediated gene transfer into neural cells in culture and in vivo Neuroreport 1997 8: 3801–3808

    Article  CAS  PubMed  Google Scholar 

  34. Weissleder R, Tung CH, Mahmood U, Bogdanov A Jr . In vivo imaging of tumors with protease-activated near-infrared fluorescent probes Nature Biotechnol 1999 17: 375–378

    Article  CAS  Google Scholar 

  35. Weissleder R et al. In vivo magnetic resonance imaging of transgene expression Nature Med 2000 6: 351–355

    Article  CAS  PubMed  Google Scholar 

  36. Weissleder R et al. MR imaging and scintigraphy of gene expression through melanin induction Radiology 1997 204: 425–429

    Article  CAS  PubMed  Google Scholar 

  37. MacLaren DC et al. Repetitive, non-invasive imaging of the dopamine D2 receptor as a reporter gene in living animals Gene Ther 1999 6: 785–791

    Article  CAS  PubMed  Google Scholar 

  38. Tjuvajev JG et al. Imaging the expression of transfected genes in vivo Cancer Res 1995 55: 6126–6132

    CAS  PubMed  Google Scholar 

  39. Blasberg RG, Tjuvajev JG . Herpes simplex virus thymidine kinase as a marker/reporter gene for PET imaging of gene therapy Quart J Nucl Med 1999 43: 163–169

    CAS  Google Scholar 

  40. Goldstein DJ, Weller SK . Herpes simplex type 1-induced ribonucleotide reductase is dis-pensable for virus growth and DNA synthesis: isolation and characterization of an ICP6 lacZ insertion mutant J Virol 1988 62: 196–205

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Roizman B, Spear PG . Preparation of herpes simplex virus of high titer J Virol 1968 2: 83–84

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Matis J, Lesso J, Mucha V, Matisova E . Purification and separation of enveloped and unenveloped herpes simplex virus particles Acta Virol 1975 19: 273–280

    CAS  PubMed  Google Scholar 

  43. McAfee JG . Techniques of harvesting platelets and neutrophils and labeling them with In-111 oxine. In: Thakur Matthew LGA (ed) Radiolabeled Cellular Blood Elements – Current Accomplishments, Immediate Potential, and Future Possibilities Plenum: New York City, New York 1979 51–57

    Google Scholar 

  44. Rainov NG et al. Selective uptake of viral and monocrystalline particles delivered intra-arterially to experimental brain neoplasms Hum Gene Ther 1995 6: 1543–1552

    Article  CAS  PubMed  Google Scholar 

  45. Boviatsis EJ et al. Gene transfer into experimental brain tumors mediated by adenovirus, herpes simplex virus, and retrovirus vectors Hum Gene Ther 1994 5: 183–191

    Article  CAS  PubMed  Google Scholar 

  46. Lang PL, White WJ . Growth, development, and survival of the Crl:CD(SD)BR stock and CDF(F344)/CrlBR strain. In: Mohr U, Dungworth D, Capen C (eds) The Pathobiology of the Aging Rat International Life Sciences Institute: Washington 1994 (vol 2 131–139

    Google Scholar 

Download references

Acknowledgements

The help of Dr Cliff Eskey in data analysis is gratefully acknowledged. Dr Anna Moore kindly provided the cell lines used. Ms Deborah Schuback prepared and titered the hrR3 viral stocks. Thanks to Dr Alex Bogdanov for helpful discussions. These studies were supported in part by grants PO1CA48729, PO1CA69246 and RO1NS35258. NGR was supported in part by FKZ 2794A/0087H from the State of Saxony-Anhalt.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schellingerhout, D., Rainov, N., Breakefield, X. et al. Quantitation of HSV mass distribution in a rodent brain tumor model. Gene Ther 7, 1648–1655 (2000). https://doi.org/10.1038/sj.gt.3301272

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301272

Keywords

This article is cited by

Search

Quick links