Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Viral Transfer Technology
  • Published:

Tumor-selective gene transduction and cell killing with an oncotropic autonomous parvovirus-based vector

Abstract

A recombinant MVMp of the fibrotropic strain of minute virus of mice (MVMp) expressing the chloramphenicol acetyltransferase reporter gene was used to infect a series of biologically relevant cultured cells, normal or tumor-derived, including normal melanocytes versus melanoma cells, normal mammary epithelial cells versus breast adenocarcinoma cells, and normal neurons or astrocytes versus glioma cells. As a reference cell system we used normal human fibroblasts versus the SV40-transformed fibroblast cell line NB324K. After infection, we observed good expression of the reporter gene in the different tumor cell types, but only poor expression if any in the corresponding normal cells. We also constructed a recombinant MVMp expressing the green fluorescent protein reporter gene and assessed by flow cytometry the efficiency of gene transduction into the different target cells. At a multiplicity of infection of 30, we observed substantial transduction of the gene into most of the tumor cell types tested, but only marginal transduction into normal cells under the same experimental conditions. Finally, we demonstrated that a recombinant MVMp expressing the herpes simplex virus thymidine kinase gene can, in vitro, cause efficient killing of most tumor cell types in the presence of ganciclovir, whilst affecting normal proliferating cells only marginally if at all. However, in the same experimental condition, breast tumor cells appeared to be resistant to GCV-mediated cytotoxicity, possibly because these cells are not susceptible to the bystander effect. Our data suggest that MVMp-based vectors could prove useful as selective vehicles for anticancer gene therapy, particularly for in vivo delivery of cytotoxic effector genes into tumor cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Marcel T, Grausz JD . The TMC Worldwide Gene Therapy Enrollment Report (June 1996) Hum Gene Ther 1996 7: 2025–2046

    Article  CAS  PubMed  Google Scholar 

  2. Yee D et al. Adenovirus-mediated gene transfer of herpes simplex virus thymidine kinase in an ascites model of human breast cancer Hum Gene Ther 1996 7: 1251–1257

    Article  CAS  PubMed  Google Scholar 

  3. Brand K et al. Liver-associated toxicity of the HSV-tk/GCV approach and adenoviral vectors Cancer Gene Ther 1997 4: 9–16

    CAS  PubMed  Google Scholar 

  4. Miller N, Vile R . Targeted vectors for gene therapy FASEB J 1995 9: 190–199

    Article  CAS  PubMed  Google Scholar 

  5. Kasahara N, Dozy AM, Kan YW . Tissue-specific targeting of retroviral vectors through ligand–receptor interactions Science 1994 266: 1373–1376

    Article  CAS  PubMed  Google Scholar 

  6. Douglas JT et al. Targeted gene delivery by tropism-modified adenoviral vectors Nat Biotechnol 1996 14: 1574–1578

    Article  CAS  PubMed  Google Scholar 

  7. Culver KW et al. In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors Science 1992 256: 1550–1552

    Article  CAS  PubMed  Google Scholar 

  8. Miller N, Whelan J . Progress in transcriptionally targeted and regulatable vectors for genetic therapy Hum Gene Ther 1997 8: 803–815

    Article  CAS  PubMed  Google Scholar 

  9. Miyatake S, Iyer A, Martuza RL, Rabkin SD . Transcriptional targeting of herpes simplex virus for cell-specific replication J Virol 1997 71: 5124–5132

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Russell SJ . Lymphokine gene therapy for cancer Immunol Today 1990 11: 196–200

    Article  CAS  PubMed  Google Scholar 

  11. Cotmore SF, Tattersall P . The autonomously replicating parvoviruses of vertebrates Adv Virus Res 1987 33: 91–174

    Article  CAS  PubMed  Google Scholar 

  12. Berns KI . Parvovirus replication Microbiol Rev 1990 54: 316–329

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Rommelaere J, Tattersall P . Oncosuppression by parvoviruses. In: Tijsen P (ed) Handbook of Parvoviruses CRC Press: Boca Raton 1990 41–57

    Google Scholar 

  14. Rommelaere J, Cornelis JJ . Antineoplastic activity of parvoviruses J Virol Meth 1991 33: 233–251

    Article  CAS  Google Scholar 

  15. Perros M et al. Upstream CREs participate in the basal activity of minute virus of mice promoter P4 and in its stimulation in ras-transformed cells J Virol 1995 69: 5506–5515

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Fuks F et al. ras oncogene-dependent activation of the P4 promoter of minute virus of mice through a proximal P4 element interacting with the Ets family of transcription factors J Virol 1996 70: 1331–1339

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Cotmore SF, Tattersall P . DNA replication in the autonomous parvoviruses Semin Virol 1995 6: 271–281

    Article  CAS  Google Scholar 

  18. Doerig C, Hirt B, Beard P, Antonietti JP . Minute virus of mice non-structural protein NS-1 is necessary and sufficient for trans-activation of the viral P39 promoter J Gen Virol 1988 69: 2563–2573

    Article  CAS  PubMed  Google Scholar 

  19. Christensen J, Cotmore SF, Tattersall P . Minute virus of mice transcriptional activator protein NS1 binds directly to the transactivation region of the viral P38 promoter in a strictly ATP-dependent manner J Virol 1995 69: 5422–5430

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Brandenburger A, Legendre D, Avalosse B, Rommelaere J . NS-1 and NS-2 proteins may act synergistically in the cytopathogenicity of parvovirus MVMp Virology 1990 174: 576–584

    Article  CAS  PubMed  Google Scholar 

  21. Caillet-Fauquet P et al. Programmed killing of human cells by means of an inducible clone of parvoviral genes encoding non-structural proteins EMBO J 1990 9: 2989–2995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Russell SJ et al. Transformation-dependent expression of interleukin genes delivered by a recombinant parvovirus J Virol 1992 66: 2821–2828

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Dupont F et al. Use of an autonomous parvovirus vector for selective transfer of a foreign gene into transformed human cells of different tissue origins and its expression therein J Virol 1994 68: 1397–1406

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Naeger LK, Cater J, Pintel DJ . The small nonstructural protein (NS2) of the parvovirus minute virus of mice is required for efficient DNA replication and infectious virus production in a cell-type-specific manner J Virol 1990 64: 6166–6175

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Spegelaere P et al. Initiation of transcription from the minute virus of mice P4 promoter is stimulated in rat cells expressing a c-Ha-ras oncogene J Virol 1991 65: 4919–4928

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Rhode SL . Replication process of the parvovirus H-1. I. Kinetics in a parasynchronous cell system J Virol 1973 11: 856–861

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Siegl G, Gautschi M . The multiplication of parvovirus Lu3 in a synchronized culture system. II. Biochemical characteristics of virus replication Arch Gesamte Virusforsch 1973 40: 119–127

    Article  CAS  PubMed  Google Scholar 

  28. Tattersall P, Bratton J . Reciprocal productive and restrictive virus–cell interactions of immunosuppressive and prototype strains of minute virus of mice J Virol 1983 46: 944–955

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Deleu L et al. Opposite transcriptional effects of cyclic AMP-responsive elements in confluent or p27KIP-overexpressing cells versus serum-starved or growing cells Mol Cell Biol 1998 18: 409–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Maron A et al. Gene therapy of rat C6 glioma using adenovirus-mediated transfer of the herpes simplex virus thymidine kinase gene: long-term follow-up by magnetic resonance imaging Gene Therapy 1996 3: 315–322

    CAS  PubMed  Google Scholar 

  31. Maron A et al. Differential toxicity of ganciclovir for rat neurons and astrocytes in primary culture following adenovirus-mediated transfer of the HSVtk gene Gene Therapy 1997 4: 25–31

    Article  CAS  PubMed  Google Scholar 

  32. Siegl G . Biology and pathogenicity of autonomous parvoviruses. In: Berns KI (ed) The Parvoviruses Plenum Press: New York 1994 297–348

    Google Scholar 

  33. Studdert MJ . Tissue tropism of parvoviruses. In: Tijsen P (ed) Handbook of Parvoviruses CRC Press: Boca Raton 1990 3–27

    Google Scholar 

  34. Koering CE et al. Induced expression of the conditionally cytotoxic herpes simplex virus thymidine kinase gene by means of a parvoviral regulatory circuit Hum Gene Ther 1994 5: 457–463

    Article  CAS  PubMed  Google Scholar 

  35. Lee SW et al. Transcriptional downregulation of gap-junction proteins blocks junctional communication in human mammary tumor cell lines J Cell Biol 1992 118: 1213–1221

    Article  CAS  PubMed  Google Scholar 

  36. Nicolson GL . Breast cancer metastasis-associated genes: role in tumour progression to the metastatic state Biochem Soc Symp 1998 63: 231–243

    CAS  PubMed  Google Scholar 

  37. Kumar NM, Gilula NB . The gap junction communication channel Cell 1996 84: 381–388

    Article  CAS  PubMed  Google Scholar 

  38. Bi WL, Parysek LM, Warnick R, Stambrook PJ . In vitro evidence that metabolic cooperation is responsible for the bystander effect observed with HSV tk retroviral gene therapy Hum Gene Ther 1993 4: 725–731

    Article  CAS  PubMed  Google Scholar 

  39. Vrionis FD et al. The bystander effect exerted by tumor cells expressing the herpes simplex virus thymidine kinase (HSVtk) gene is dependent on connexin expression and cell communication via gap junctions Gene Therapy 1997 4: 577–585

    Article  CAS  PubMed  Google Scholar 

  40. Dilber MS et al. Gap junctions promote the bystander effect of herpes simplex virus thymidine kinase in vivo Cancer Res 1997 57: 1523–1528

    CAS  PubMed  Google Scholar 

  41. Rommelaere J, Ward DC . Effect of UV-irradiation on DNA replication of the parvovirus minute-virus-of-mice in mouse fibroblasts Nucleic Acids Res 1982 10: 2577–2596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shein HM, Enders JF . Multiplication and cytopathogenicity of simian vacuolating virus 40 in cultures of human tissue Proc Soc Exp Biol Med 1962 40: 495–500

    Article  Google Scholar 

  43. Heimann P et al. Chromosomal findings in cultured melanocytes from a giant congenital nevus Cancer Genet Cytogenet 1993 68: 74–77

    Article  CAS  PubMed  Google Scholar 

  44. Merchlinsky MJ et al. Construction of an infectious molecular clone of the autonomous parvovirus minute virus of mice J Virol 1983 47: 227–232

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Colbere-Garapin F et al. Cloning of the active thymidine kinase gene of herpes simplex virus type 1 in Escherichia coli K-12 Proc Natl Acad Sci USA 1979 76: 3755–3759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Avalosse B et al. Method for concentrating and purifying recombinant autonomous parvovirus vectors designed for tumour-cell-targeted gene therapy J Virol Meth 1996 62: 179–183

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J-N Octave for providing normal rat neurones and astrocytes, and P Spegelaere for the gift of pSP116. We are grateful to T Dupressoir, C Bagnis, P Martiat, L Tenenbaum and JC Dumon for helpful discussions and critical reading of the manuscript. We also thank JC Dumon for the statistical analysis. This work was financially supported by the ‘Fonds National de la Recherche Scientifique’ (FNRS), the Région Bruxelles-Capitale, Z-Company, the Fondation Medic, and by grants from ‘Télévie’ and ‘les Amis de l'Institut Bordet’ (to AK).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dupont, F., Avalosse, B., Karim, A. et al. Tumor-selective gene transduction and cell killing with an oncotropic autonomous parvovirus-based vector. Gene Ther 7, 790–796 (2000). https://doi.org/10.1038/sj.gt.3301161

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301161

Keywords

This article is cited by

Search

Quick links