Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Viral Transfer Technology
  • Published:

Gene transfer of virally encoded chemokine antagonists vMIP-II and MC148 prolongs cardiac allograft survival and inhibits donor-specific immunity

Abstract

Introducing immunomodulatory molecules into allografts by gene transfer may avoid the side-effects of systemic immunosuppression. vMIP-II and MC148 are two recently identified chemokine homologues encoded by human herpes virus 8 and Molluscum contagiosum, respectively, that have antagonistic activities against multiple different CC and CXC chemokine receptors. We hypothesized that introduction of these molecules into cardiac allografts may block leukocyte infiltration into the grafts and prolong survival. Vascularized and nonvascularized cardiac allografts in mice were performed and plasmid DNA encoding vMIP-II, MC148 and/or vIL-10 was transferred into the allograft at the time of transplantation. Gene transfer of either vMIP-II or MC148 into cardiac allografts markedly prolonged graft survival. Combining gene transfer of either one of these chemokine antagonists with vIL-10 gene transfer, which has a mechanistically different immunosuppressive action, further enhanced graft survival. vMIP-II and MC148 gene transfer both resulted in a marked decrease of donor-specific cytotoxic T lymphocytes (CTL) infiltrating the grafts and inhibited alloantibody production. These results demonstrate that plasmid-mediated gene transfer of virally encoded chemokine antagonists vMIP-II and MC148 can block donor-specific lymphocyte immunity within cardiac allografts and prolong graft survival. This is a new mechanistic approach to analyze, treat, and prevent graft rejection. Delivery of these or related molecules by gene transfer or conventional pharmacologic means may represent a novel therapeutic modality for alloactivation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Luster AD . Chemokines – chemotatic cytokines that mediate inflammation New Engl J Med 1998 338: 436–445

    Article  CAS  PubMed  Google Scholar 

  2. Baggiolini M, Dewald B, Moser B . Human chemokines: an update Annu Rev Immunol 1997 15: 675–705

    Article  CAS  PubMed  Google Scholar 

  3. Baggiolini M . Chemokines and leukocyte traffic Nature 1998 392: 565–568

    Article  CAS  PubMed  Google Scholar 

  4. Premack BA, Schall TJ . Chemokine receptors: gateways to inflammation and infection Nature Med 1996 2: 1174–1178

    Article  CAS  PubMed  Google Scholar 

  5. Kelner GS et al. Lymphotactin: a cytokine that represents a new class of chemokine Science 1994 266: 1395–1399

    Article  CAS  PubMed  Google Scholar 

  6. Bazan JF et al. A new class of membrane-bound chemokine with a CX3C motif Nature 1997 385: 640–644

    Article  CAS  PubMed  Google Scholar 

  7. Zhong W, Wang H, Herndier B, Ganem D . Restricted expression of Kaposi sarcoma-associated herpesvirus (human herpesvirus 8) genes in Kaposi sarcoma Proc Natl Acad Sci USA 1996 93: 6641–6646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Weiss RA . Human herpesvirus 8 in lymphoma and Kaposi's sarcoma: now the virus can be propagated Nature Med 1996 2: 277–278

    Article  CAS  PubMed  Google Scholar 

  9. Boshoff C et al. Kaposi's sarcoma-associated herpesvirus infects endothelial and spindle cells Nature Med 1995 1: 1274–1278

    Article  CAS  PubMed  Google Scholar 

  10. Boshoff C et al. Kaposi's-sarcoma-associated herpesvirus in HIV negative Kaposi's sarcoma Lancet 1995 345: 1043–1044

    Article  CAS  PubMed  Google Scholar 

  11. Dupin N et al. Herpesvirus-like DNA sequences in patients with Mediterranean Kaposi's sarcoma Lancet 1995 345: 761–762

    Article  CAS  PubMed  Google Scholar 

  12. Moore PS, Chang Y . Detection of herpesvirus-like DNA sequences in Kaposi's sarcoma in patients with and without HIV infection New Engl J Med 1995 332: 1181–1185

    Article  CAS  PubMed  Google Scholar 

  13. Chang Y et al. Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi's sarcoma Science 1994 266: 1865–1896

    Article  CAS  PubMed  Google Scholar 

  14. Moore PS, Boshoff C, Weiss RA, Chang Y . Molecular mimicry of human cytokine and cytokine response pathway genes by KSHV Science 1996 274: 1739–1744

    Article  CAS  PubMed  Google Scholar 

  15. Nicholas J et al. Kaposi's sarcoma-associated human herpesvirus-8 encodes homologues of macrophage inflammatory protein-1 and interleukin-6 Nature Med 1997 3: 287–292

    Article  CAS  PubMed  Google Scholar 

  16. Kledal TN et al. A broad spectrum chemokine antagonist encoded by Kaposi's sarcoma-associated herpesvirus Science 1997 277: 1656–1659

    Article  CAS  PubMed  Google Scholar 

  17. Boshoff C et al. Angiogenic and HIV-inhibitory functions of KSHV-encoded chemokines Science 1997 278: 290–294

    Article  CAS  PubMed  Google Scholar 

  18. Senkevich TG et al. Genome sequence of a human tumorigenic poxvirus: prediction of specific host response-evasion genes Science 1996 273: 813–816

    Article  CAS  PubMed  Google Scholar 

  19. Krathwohl MD et al. Functional characterization of the C-C chemokine-like molecules encoded by molluscum contagiosum virus types 1 and 2 Proc Natl Acad Sci USA 1997 94: 9875–9880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Damon I, Murphy PM, Moss B . Broad spectrum chemokine antagonistic activity of a human poxvirus chemokine homolog Proc Natl Acad Sci USA 1998 95: 6403–6407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Clark-Lewis I et al. Structure-activity relationships of chemokines J Leuk Bio 1995 57: 703–711

    Article  CAS  Google Scholar 

  22. Gottlieb SL, Myskowski PL . Molluscum contagiosum Int J Dermatol 1994 33: 453–461

    Article  CAS  PubMed  Google Scholar 

  23. DeBruyne LA, Magee JC, Buelow R, Bromberg JS . Gene transfer of immunomodulatory peptides correlates with heme oxygenase-1 induction and enhanced allograft survival Transplantation (in press)

  24. Qin L et al. Multiple vectors effectively achieve gene transfer in a murine cardiac transplantation model: immunosuppression with TGF-β1 or vIL-10 Transplantation 1995 59: 809–816

    Article  CAS  PubMed  Google Scholar 

  25. Qin L et al. Retrovirus-mediated transfer of viral IL-10 gene prolongs murine cardiac allograft survival J Immunol 1996 156: 2316–2323

    CAS  PubMed  Google Scholar 

  26. DeBruyne LA et al. Lipid-mediated gene transfer of viral IL-10 prolongs vascularized cardiac allograft survival by inhibiting donor-specific cellular and humoral immune responses Gene Therapy 1998 5: 1079–1087

    Article  CAS  PubMed  Google Scholar 

  27. Moore KW et al. Homology of cytokine synthesis inhibitory factor (IL-10) to the Epstein–Barr virus gene BCRFI Science 1990 248: 1230–1234

    Article  CAS  PubMed  Google Scholar 

  28. de Waal Malefyt R et al. Interleukin 10 (IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes J Exp Med 1991 174: 1209–1220

    Article  CAS  PubMed  Google Scholar 

  29. de Waal Malefyt R et al. Interleukin 10 (IL-10) and viral IL-10 strongly reduce antigen-specific human T cell proliferation by diminishing the antigen-presenting capacity of monocytes via downregulation of class II major histocompatibility complex expression J Exp Med 1991 174: 915–924

    Article  CAS  PubMed  Google Scholar 

  30. Enk AH, Angeloni VL, Udey MC, Katz SI . Inhibition of Langerhans cell antigen-presenting function by IL-10. A role for IL-10 in induction of tolerance J Immunol 1993 151: 2390–2398

    CAS  PubMed  Google Scholar 

  31. Ding L et al. IL-10 inhibits macrophage costimulatory activity by selectively inhibiting the up-regulation of B7 expression J Immunol 1993 151: 1224–1234

    CAS  PubMed  Google Scholar 

  32. Willems F et al. Interleukin-10 inhibits B7 and intercellular adhesion molecule-1 expression on human monocytes Eur J Immunol 1994 24: 1007–1009

    Article  CAS  PubMed  Google Scholar 

  33. Chan SY et al. In vivo depletion of CD8+ T cells results in Th2 cytokine production and alternate mechanisms of allograft rejection Transplantation 1995 59: 1155–1161

    Article  CAS  PubMed  Google Scholar 

  34. Fong AM et al. Fractalkine and CX3CR1 mediate a novel mechanism of leukocyte capture, firm adhesion, and activation under physiologic flow J Exp Med 1998 188: 1413–1419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pan Y et al. Neurotactin, a membrane-anchored chemokine upregulated in brain inflammation Nature 1997 387: 611–617

    Article  CAS  PubMed  Google Scholar 

  36. Chen S et al. In vivo inhibition of CC and CX3C chemokine-induced leukocyte infiltration and attenuation of glomerulonephritis in Wistar–Kyoto (WKY) rats by vMIP-II J Exp Med 1998 188: 193–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Taub DD et al. β chemokines costimulate lymphocyte cytolysis, proliferation, and lymphokine production J Leuk Bio 1996 59: 81–89

    Article  CAS  Google Scholar 

  38. Taub DD et al. Chemokines and T lymphocyte activation. I. β chemokines costimulate human T lymphocyte activation in vitro J Immmunol 1996 156: 2095–2103

    CAS  Google Scholar 

  39. Taub DD, Sayers T, Carter C, Ortaldo JR . α and β chemokines induce NK cell migration and enhance NK cell cytolytic activity via cellular degranulation J Immunol 1995 155: 3877–3888

    CAS  PubMed  Google Scholar 

  40. Philip R et al. Efficient and sustained gene expression in primary T lymphocytes and primary and cultured tumor cells mediated by adeno-associated virus plasmid DNA complexed to cationic liposomes Mol Cell Bio 1994 14: 2411–2418

    Article  CAS  Google Scholar 

  41. Fulmer R, Cramer A, Liebelt A . Transplantation of cardiac tissue into the mouse ear Am J Anat 1963 113: 273–285

    Article  CAS  PubMed  Google Scholar 

  42. Judd KP, Trentin JJ . Cardiac transplantation in mice: I. Factors influencing the take and survival of heterotopic grafts Transplantation 1971 11: 298–302

    CAS  PubMed  Google Scholar 

  43. Corry RJ, Winn HS, Russell PS . Primarily vascularized allografts of hearts in mice Transplantation 1973 16: 343–350

    Article  CAS  PubMed  Google Scholar 

  44. Bishop DK, Orosz CG . Limiting dilution analysis for alloreactive, TCGF-secreting T cells: LDA methods that discriminate between unstimulated precursor T cells and in vivo alloactivated T cells Transplantation 1989 47: 671–677

    Article  CAS  PubMed  Google Scholar 

  45. Orosz CG, Horstemeyer B, Zinn NE, Bishop DK . Development and evaluation of an LDA technique that can discriminate in vivo alloactivated CTL from their naive CTL precursors Transplantation 1989 47: 189–194

    Article  CAS  PubMed  Google Scholar 

  46. Taswell C . Limiting dilution assays for the determination of immunocompetent cell frequencies. I. Data analysis J Immunol 1981 126: 1614–1619

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr John Magee for stimulating discussions and critical comments during the preparation of this manuscript. This work is supported in part by the National Institutes of Health T32 AI-07413 (LAD), RO1 AI-31946 (DKB), UM MAC P60-AR20557 (JSB); Edward Mallinckrodt, Jr Foundation (JSB); and the Baxter Extramural Grant Program (JSB).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeBruyne, L., Li, K., Bishop, D. et al. Gene transfer of virally encoded chemokine antagonists vMIP-II and MC148 prolongs cardiac allograft survival and inhibits donor-specific immunity. Gene Ther 7, 575–582 (2000). https://doi.org/10.1038/sj.gt.3301128

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301128

Keywords

This article is cited by

Search

Quick links