Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Paper
  • Published:

Adenovirus-mediated expresssion of the murine ecotropic receptor facilitates transduction of human hematopoietic cells with an ecotropic retroviral vector

Abstract

One factor limiting the ability to modify human repopulating hematopoietic cells genetically with retroviral vectors is the relatively low expression of the cognate viral receptor. We have tested sequential transduction of human hematopoietic cells with an adenoviral vector encoding the ecotropic retroviral receptor followed by transduction with an ecotropic retroviral vector. Adenoviral transduction of K562 erythroleukemia cells was highly efficiently with >95% of cells expressing the ecotropic receptor at a multiplicity of infection (MOI) of 103with a correspondingly high transduction with a retroviral vector. Ecotropic receptor expression in CD34+ cells following transduction with adenoviral vectors was increased by at least two-fold (from 20 to 48%) by replacing the RSV promoter with the CMV E1a promoter, resulting in a parallel increase in retroviral transduction efficiency. Replacing the head portion of the fiber protein in conventional adenoviral vectors (serotype 5) with the corresponding portion from an adenoviral 3 serotype resulted in ecotropic receptor expression in 60% of CD34+ cells at an MOI of 104 and a retroviral transduction of 60% of hematopoietic clonogenic progenitors. The sequential transduction strategy also resulted in efficient transduction of the primitive CD34+CD38 subset suggesting that it may hold promise for genetic modification of human hematopoietic stem cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Sorrentino BP, Nienhuis AW . The hematopoietic system as a target for gene therapy. In: Friedmann T (ed) The Development of Gene Therapy Cold Spring Harbor Laboratory Press: New York 1998 351–426

    Google Scholar 

  2. Dick JE et al. Introduction of a selectable gene into primitive stem cells capable of long-term reconstitution of the hemopoietic system of W/Wv mice Cell 1985 42: 71–79

    Article  CAS  PubMed  Google Scholar 

  3. Lemischka IR, Raulet DH, Mulligan RC . Developmental potential and dynamic behavior of hematopoietic stem cells Cell 1986 45: 917–927

    Article  CAS  PubMed  Google Scholar 

  4. Persons DA et al. Retroviral-mediated transfer of the green fluorescent protein gene into murine hematopoietic cells facilitates scoring and selection of transduced progenitors in vitro and identification of genetically modified cells in vivo Blood 1997 90: 1777–1786

    CAS  PubMed  Google Scholar 

  5. Bodine DM et al. Long-term in vivo expression of a murine adenosine deaminase gene in rhesus monkey hematopoietic cells of multiple lineages after retroviral mediated gene transfer into CD34+ bone marrow cells Blood 1993 82: 1975–1980

    CAS  PubMed  Google Scholar 

  6. Kiem HP et al. Gene transfer into marrow repopulating cells: comparison between amphotropic and gibbon ape leukemia virus pseudotyped retroviral vectors in a competitive repopulation assay in baboons Blood 1997 90: 4638–4645

    CAS  PubMed  Google Scholar 

  7. Brenner MK et al. Gene marking to determine whether autologous marrow infusion restores long-term haematopoiesis in cancer patients Lancet 1993 342: 1134–1137

    Article  CAS  PubMed  Google Scholar 

  8. Dunbar CE et al. Retrovirally marked CD34-enriched peripheral blood and bone marrow cells contribute to long-term engraftment after autologous transplantation Blood 1995 85: 3048–3057

    CAS  PubMed  Google Scholar 

  9. Albritton LM, Kim JW, Tseng L, Cunningham JM . Envelope-binding domain in the cationic amino acid transporter determines the host range of ecotropic murine retroviruses J Virol 1993 67: 2091–2096

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Orlic D et al. The level of mRNA encoding the amphotropic retrovirus receptor in mouse and human hematopoietic stem cells is low and correlates with the efficiency of retrovirus transduction Proc Natl Acad Sci USA 1996 93: 11097–11102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Abkowitz JL, Catlin SN, Guttorp P . Strategies for hematopoietic stem cell gene therapy: insights from computer simulation studies Blood 1997 89: 3192–3198

    CAS  PubMed  Google Scholar 

  12. Bodine DM, McDonagh KT, Seidel NE, Nienhuis AW . Survival and retrovirus infection of murine hematopoietic stem cells in vitro: effects of 5-FU and method of infection Exp Hematol 1991 19: 206–212

    CAS  PubMed  Google Scholar 

  13. Dunbar CE et al. Improved retroviral gene transfer into murine and Rhesus peripheral blood or bone marrow repopulating cells primed in vivo with stem cell factor and granulocyte colony-stimulating factor Proc Natl Acad Sci USA 1996 93: 11871–11876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hanenberg H et al. Colocalization of retrovirus and target cells on specific fibronectin fragments increases genetic transduction of mammalian cells Nature Med 1996 2: 876–882

    Article  CAS  PubMed  Google Scholar 

  15. Bhatia M et al. Quantitative analysis reveals expansion of human hematopoietic repopulating cells after short-term ex vivo culture J Exp Med 1997 186: 619–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bertran J et al. Recombinant adeno-associated virus-mediated high-efficiency, transient expression of the murine cationic amino acid transporter (ecotropic retroviral receptor) permits stable transduction of human HeLa cells by ecotropic retroviral vectors J Virol 1996 70: 6759–6766

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Lieber A, Vrancken Peeters M-JTFD, Kay MA . Adenovirus-mediated transfer of amphotropic retrovirus receptor cDNA increases retroviral transduction in cultured cells Hum Gene Ther 1995 6: 5–11

    Article  CAS  PubMed  Google Scholar 

  18. Qing K et al. Adeno-associated virus type 2-mediated transfer of ecotropic retrovirus receptor cDNA allows ecotropic retroviral transduction of established and primary human cells J Virol 1997 71: 5663–5667

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Scott-Taylor TH, Gallardo HF, Gänsbacher B, Sadelain M . Adenovirus facilitated infection of human cells with ecotropic retrovirus Gene Therapy 1998 5: 621–629

    Article  CAS  PubMed  Google Scholar 

  20. Neering SJ et al. Transduction of primitive human hematopoietic cells with recombinant adenovirus vectors Blood 1996 88: 1147–1155

    CAS  PubMed  Google Scholar 

  21. Bregni M et al. Adenovirus vectors for gene transduction into mobilized blood CD34+ cells Gene Therapy 1998 5: 465–472

    Article  CAS  PubMed  Google Scholar 

  22. Watanabe T et al. Gene transfer into human bone marrow hematopoietic cells mediated by adenovirus vectors Blood 1996 87: 5032–5039

    CAS  PubMed  Google Scholar 

  23. Frey BM et al. High-efficiency gene transfer into ex vivo expanded human hematopoietic progenitors and precursor cells by adenovirus vectors Blood 1998 91: 2781–2792

    CAS  PubMed  Google Scholar 

  24. Hargrove PW, Vanin EF, Kurtzman GJ, Nienhuis AW . High-level globin gene expression mediated by a recombinant adeno-associated virus genome that contains the 3′ γ globin gene regulatory element and integrates as tandem copies in erythroid cells Blood 1997 89: 2167–2175

    CAS  PubMed  Google Scholar 

  25. Ponnazhagan S et al. Adeno-associated virus type 2-mediated transduction in primary human bone marrow-derived CD34+ hematopoietic progenitor cells: donor variation and correlation of transgene expression with cellular differentiation J Virol 1997 71: 8262–8267

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Summerford C, Samulski RJ . Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions J Virol 1998 72: 1438–1445

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Russell DW, Miller AD, Alexander IE . Adeno-associated virus vectors preferentially transduce cells in S phase Proc Natl Acad Sci USA 1994 91: 8915–8919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Stevenson SC et al. Human adenovirus serotypes 3 and 5 bind to two different cellular receptors via the fiber head domain J Virol 1995 69: 2850–2857

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Stevenson SC, Rollence M, Marshall-Neff J, McClelland A . Selective targeting of human cells by a chimeric adenovirus vector containing a modified fiber protein J Virol 1997 71: 4782–4790

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Smith TA et al. Adenovirus mediated expression of therapeutic plasma levels of human factor IX in mice Nat Genet 1993 5: 397–402

    Article  CAS  PubMed  Google Scholar 

  31. Byk T et al. Lipofectamine and related cationic lipids strongly improve adenoviral infection efficiency of primitive human hematopoietic cells Hum Gene Ther 1998 9: 2493–2502

    Article  CAS  PubMed  Google Scholar 

  32. Bunnell BA et al. High-efficiency retroviral-mediated gene transfer into human and nonhuman primate peripheral blood lymphocytes Proc Natl Acad Sci USA 1995 92: 7739–7743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wickman TJ, Mathias P, Cheresh DA, Nemerow GR . Integrins alpha v beta 3 and alpha v beta 5 promote adenovirus internalization but not virus attachment Cell 1993 73: 309–319

    Article  Google Scholar 

  34. Bergelson JM et al. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5 Science 1997 275: 1320–1323

    Article  CAS  PubMed  Google Scholar 

  35. Krasnykh V et al. Characterization of an adenovirus vector containing a heterologous peptide epitope in the HI loop of the fiber knob J Virol 1998 72: 1844–1852

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Wickham TJ, Carrion ME, Kovesdi I . Targeting of adenovirus penton base to new receptors through replacement of its RGD motif with other receptor-specific peptide motifs Gene Therapy 1995 2: 750–756

    CAS  PubMed  Google Scholar 

  37. Clarke MF et al. A recombinant Bcl-x s adenovirus selectively induces apoptosis in cancer cells but not in normal bone marrow cells Proc Natl Acad Sci USA 1995 92: 11024–11028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bhatia M et al. Purification of primitive human hematopoietic cells capable of repopulating immune-deficient mice Proc Natl Acad Sci USA 1997 94: 5320–5325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Civin CI et al. Sustained, retransplantable, multilineage engraftment of highly purified adult human bone marrow stem cells in vivo Blood 1996 11: 4102–4109

    Google Scholar 

  40. Dao MA, Shah AJ, Crooks GM, Nolta JA . Engraftment and retroviral marking of CD34+ and CD34+CD38 human hematopoietic progenitors assessed in immune-deficient mice Blood 1998 91: 1243–1255

    CAS  PubMed  Google Scholar 

  41. Yang Y, Ertl HC, Wilson JM . MHC class I-restricted cytotoxic T lymphocytes to viral antigens destroy hepatocytes in mice infected with E1-deleted recombinant adenoviruses Immunity 1994 1: 433–443

    Article  CAS  PubMed  Google Scholar 

  42. Joos K, Yang Y, Fisher KJ, Wilson JM . Transduction of dendritic cells by DNA viral vectors directs the immune response to transgene products in muscle fibers J Virol 1998 72: 4212–4223

    Google Scholar 

  43. Morsy MA et al. An adenoviral vector deleted for all viral coding sequences enhanced safety and extended expression of the leptin transgene Proc Natl Acad Sci USA 1998 95: 7866–7871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sanes JR, Rubenstein JLR, Nicolas J-F . Use of a recombinant retrovirus to study post-implantation cell lineage in mouse embryos EMBO J 1986 5: 3133–3142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cassel A, Cottler-Fox M, Doren S, Dunbar CE . Retroviral-mediated gene transfer into CD34-enriched human peripheral blood stem cells Exp Hematol 1993 21: 585–591

    CAS  PubMed  Google Scholar 

  46. McLachlin JR et al. Factors affecting retroviral vector function and structural integrity Virol 1993 195: 1–5

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank Jean Johnson for her outstanding assistance in preparation of the manuscript, Craig Jordan for the gift of an Ad5 CMV-GFP vector, and Dr Richard Ashman for his help with the FACs analysis and figures. This work was supported by NHLBI Program Project Grant P01 HL 53749, the ASSISI Foundation of Memphis Grant 94–00, Cancer Center Support CORE Grant, P30 CA 21765 and American Lebanese Syrian Associated Charities (ALSAC). Amit C Nathwani was supported by a grant from the Wellcome Trust; number 049894/114.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nathwani, A., Persons, D., Stevenson, S. et al. Adenovirus-mediated expresssion of the murine ecotropic receptor facilitates transduction of human hematopoietic cells with an ecotropic retroviral vector. Gene Ther 6, 1456–1468 (1999). https://doi.org/10.1038/sj.gt.3300974

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3300974

Keywords

This article is cited by

Search

Quick links