Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Paper
  • Published:

Repetitive, non-invasive imaging of the dopamine D2 receptor as a reporter gene in living animals

Abstract

Reporter genes (eg β-galactosidase, chloramphenicol-acetyltransferase, green fluorescent protein, luciferase) play critical roles in investigating mechanisms of gene expression in transgenic animals and in developing gene delivery systems for gene therapy. However, measuring expression of these reporter genes requires biopsy or death. We now report a procedure to image reporter gene expression repetitively and non-invasively in living animals with positron emission tomography (PET), using the dopamine type 2 receptor (D2R) as a reporter gene and 3-(2′-[18F]fluoroethyl)spiperone (FESP) as a reporter probe. We use a viral delivery system to demonstrate the ability of this PET reporter gene/PET reporter probe system to image reporter gene expression following somatic gene transfer. In mice injected intravenously with replication-deficient adenovirus carrying a D2R reporter gene, PET in vivo measures of hepatic [18F] retention are proportional to in vitro measures of hepatic FESP retention, D2R ligand binding and D2R mRNA. We use tumor-forming cells carrying a stably transfected D2R gene to demonstrate imaging of this PET reporter gene/PET reporter probe system in ‘tissues’. Tumors expressing the transfected D2R reporter gene retain substantially more FESP than control tumors. The D2R/FESP reporter gene/reporter probe system should be a valuable technique to monitor, in vivo, expression from both gene therapy vectors and transgenes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Chalfie M et al. Green fluorescent protein as a marker for gene expression Science 1989 263: 802–805

    Article  Google Scholar 

  2. Chalfie M . Green fluorescent protein Photochem Photobio 1995 62: 651–656

    Article  CAS  Google Scholar 

  3. Bennett J, Duan D, Engelhardt JF, Maguire AM . Real-time, noninvasive in vivo assessment of adeno-associated virus-mediated retinal transduction Invest Ophthalmol Vis Sci 1997 38: 2857–2863

    CAS  PubMed  Google Scholar 

  4. Contag PR, Olomu IN, Stevenson DK, Contag CH . Bioluminescent indicators in living mammals Nature Med 1998 4: 245–247

    Article  CAS  Google Scholar 

  5. Phelps MC . PET: a biological imaging technique Neurochemical Res 1991 16: 929–940

    Article  CAS  Google Scholar 

  6. Gambhir SS et al. Imaging of adenoviral directed herpes simplex virus type 1 thymidine kinase reporter gene expression in mice with radiolabeled ganciclovir J Nucl Med 1998 30: 2003–2011

    Google Scholar 

  7. Barrio JR, Namavari M, Phelps ME, Satyamurthy N . Regioselective fluorination of substituted guanines with dilute F2: a facile entry to 8-fluoroguanine derivatives J Org Chem 1996 61: 6084–6085

    Article  CAS  Google Scholar 

  8. Tjuvajev JG et al. Noninvasive imaging of herpes virus thymidine kinase gene transfer and expression: a potential method for monitoring clinical gene therapy Cancer Res 1996 56: 4087–4095

    CAS  PubMed  Google Scholar 

  9. Tjuvajev JG et al. Imaging herpes virus thymidine kinase gene transfer and expression by positron emission tomography Cancer Res 1998 58: 4333–4341

    CAS  PubMed  Google Scholar 

  10. Haberkorn U et al. Monitoring gene therapy with herpes simplex virus thymidine kinase in hepatoma cells: uptake of specific substrates J Nucl Med 1997 38: 287–294

    CAS  PubMed  Google Scholar 

  11. Haberkorn U et al. Monitoring of gene therapy with cytosine deaminase: in vitro studies using 3H-5-fluorocytosine J Nucl Med 1996 37: 87–94

    CAS  PubMed  Google Scholar 

  12. Monclus M et al. Development of a positron emission tomography radiopharmaceutical for imaging thymidine kinase gene expression: synthesis and in vitro evaluation of 9-{(3-[F-18]fluoro-1-hydroxy-2-propoxy)methyl}guanine Bioorg Med Chem Lett 1997 7: 1879–1882

    Article  CAS  Google Scholar 

  13. Alauddin MM et al. 9-[(3-[18F]-fluoro-1-hydroxy-2-propoxy)methyl]guanine ([18F]-FHPG): a potential imaging agent of viral infection and gene therapy using PET Nuc Med Biol 1996 23: 787–792

    Article  CAS  Google Scholar 

  14. Barrio JR et al. 3-(2′-[18F]Fluoroethyl)spiperone: in vivo biochemical and kinetic characterization in rodents, nonhuman primates, and humans J Cerbral Blood Flow Metab 1989 9: 830–839

    Article  CAS  Google Scholar 

  15. Bahn MM et al. Models for in vivo kinetic interactions of dopamine D2 neuroreceptors and 3-(2′-[18F]Fluoroethyl)spiperone examined by positron emission tomography J Cerebral Blood Flow Metab 1989 9: 840–849

    Article  CAS  Google Scholar 

  16. Satyamurthy N et al. 3-(2′-[18F]Fluoroethyl)spiperone, a potent dopamine antagonist: synthesis, structural analysis and in vivo utilization in humans Appl Radiat Isotopes Int J Radiat Appl Instrument Part A 1990 41: 113–129

    Article  CAS  Google Scholar 

  17. Bunzow JR et al. Cloning and expression of a rat D2 dopamine receptor cDNA Nature 1988 367: 783–787

    Article  Google Scholar 

  18. Missale C et al. Dopamine receptors: from structure to function Physiol Rev 1998 78: 189–225

    Article  CAS  Google Scholar 

  19. Creese I . Neurochemical, behavioral, and clinical perspectives. In: Coyle JT, Enna SJ, (eds). Neuroleptics Raven Press: New York 1983 208–211

    Google Scholar 

  20. Shaked A et al. Adenovirus-mediated gene transfer in the transplant setting. II. Successful expression of transferred cDNA in syngeneic liver grafts Transplantation 1994 57: 1508–1511

    Article  CAS  Google Scholar 

  21. Herz J, Girard RD . Adenovirus-mediated transfer of low density lipoprotein receptor gene acutely accelerates cholesterol clearance in normal mice Proc Natl Acad Sci USA 1993 90: 2812–2816

    Article  CAS  Google Scholar 

  22. Cherry SR et al. MicroPET: a high resolution PET scanner for imaging small animals IEEE Trans Nucl Sci 1997 44: 1161–1166

    Article  CAS  Google Scholar 

  23. Seeman P . Brain dopamine receptors Pharm Rev 1981 32: 229–313

    Google Scholar 

  24. Neve KA, Henningsen RA, Bunzow JR, Civelli O . Functional characterization of a rat dopamine D-2 receptor cDNA expressed in a mammalian cell line Mol Pharmacol 1989 36: 446–451

    CAS  PubMed  Google Scholar 

  25. Johnson PL, Coussens PM, Danko AV, Shalloway D . Overexpressed pp60c-src can induce focus formation without complete transformation of NIH 3T3 cells Mol Cell Biol 1983 5: 1073–1083

    Article  Google Scholar 

  26. Phelps ME et al. Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18) 2-fluoro-2-deoxy-D-glucose: validation of method Ann Neurol 1979 6: 371–388

    Article  CAS  Google Scholar 

  27. Ehrin E et al. Preparation of 11C-labelled raclopride, a new potent dopamine receptor antagonist: preliminary PET studies of cerebral dopamine receptors in the monkey Int J Appl Radiat Isot 1985 36: 269–273

    Article  CAS  Google Scholar 

  28. Hall H et al. Raclopride, a new selective ligand for the dopamine-D2 receptors Prog Neuropsychopharmacol Biol Psychiatry 1988 12: 559–568

    Article  CAS  Google Scholar 

  29. Hume SP et al. Quantitation of carbon-11-labeled raclopride in rat striatum using positron emission tomography Synapse 1992 12: 47–54

    Article  CAS  Google Scholar 

  30. Wagner HN et al. Imaging dopamine receptors in the human brain by positron tomography Science 1983 221: 1264–1266

    Article  CAS  Google Scholar 

  31. Kessler RM et al. High affinity dopamine D2 receptor radioligands. 1. Regional rat brain distribution of iodinated benzamides J Nucl Med 1991 32: 1593–1600

    CAS  PubMed  Google Scholar 

  32. Strange PG . Aspects of the structure of the D2 dopamine receptor TINS 1990 13: 373–378

    CAS  PubMed  Google Scholar 

  33. Neve KA et al. Pivotal role for aspartate-80 in the regulation of dopamine D2 receptor affinity for drugs and inhibition of adenylyl cyclase Mol Pharmacol 1991 39: 733–739

    CAS  PubMed  Google Scholar 

  34. Woodward R et al. Investigation of the role of conserved serine residues in the long form of the rat D2 dopamine receptor using site-directed mutagenesis J Neurochem 1996 66: 394–402

    Article  CAS  Google Scholar 

  35. Cox BA et al. Contributions of conserved serine residues to the interactions of ligands with dopamine D2 receptors J Neurochem 1992 59: 627–635

    Article  CAS  Google Scholar 

  36. No D, Yao TP, Evans RM . Ecdysone-inducible gene expression in mammalian cells and transgenic mice Proc Natl Acad Sci USA 1996 93: 3346–3351

    Article  CAS  Google Scholar 

  37. Gossen M, Bujard H . Tight control of gene expression in mammalian cells by tetracycline-responsive promoters Proc Natl Acad Sci USA 1992 89: 5547–5551

    Article  CAS  Google Scholar 

  38. Kistner A et al. Doxycycline-mediated quantitative and tissue-specific control of gene expression in transgenic mice Proc Natl Acad Sci USA 1996 93: 10933–10938

    Article  CAS  Google Scholar 

  39. Veelken H et al. Systematic evaluation of chimeric marker genes on dicistronic transcription units for regulated expression of transgenes in vitro and in vivo Hum Gene Ther 1996 7: 1827–1836

    Article  CAS  Google Scholar 

  40. Gurtu V, Yan G, Zhang G . IRES bicistronic expression vectors for efficient creation of stable mammalian cell lines Biochem Biophys Res Commun 1996 229: 295–298

    Article  CAS  Google Scholar 

  41. Hsieh CL et al. Improved gene expression by a modified bicistronic retroviral vector Biochem Biophys Res Commun 1995 214: 910–917

    Article  CAS  Google Scholar 

  42. Sokolic RA et al. A bicistronic retrovirus vector containing a picornavirus internal ribosome entry site allows for correction of X-linked CGD by selection for MDR1 expression Blood 1996 87: 42–50

    CAS  PubMed  Google Scholar 

  43. Gomez-Foix AM et al. Adenovirus-mediated transfer of the muscle glycogen phosphorylase gene into hepatocytes confers altered regulation of glycogen metabolism J Biol Chem 1992 267: 25129–25134

    CAS  PubMed  Google Scholar 

  44. Sambrook J, Fritsch EF, Maniatis T . Molecular Cloning: A Laboratory Manual Cold Spring Harbor Laboratory: Cold Spring Harbor, NY 1989

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

MacLaren, D., Gambhir, S., Satyamurthy, N. et al. Repetitive, non-invasive imaging of the dopamine D2 receptor as a reporter gene in living animals. Gene Ther 6, 785–791 (1999). https://doi.org/10.1038/sj.gt.3300877

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3300877

Keywords

This article is cited by

Search

Quick links