Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A polymorphism in human TLR2 is associated with increased susceptibility to tuberculous meningitis

Abstract

Tuberculous meningitis (TBM) results from the haematogenous dissemination of Mycobacterium tuberculosis from the lung to the brain. Dissemination is believed to occur early during infection, before the development of adaptive immunity. Toll-like receptor 2 (TLR2) mediates recognition of M. tuberculosis and initiates the innate immune response to infection. We hypothesized that polymorphisms in the TLR2 gene influence bacterial dissemination and the development of TBM. A case–control study was designed to test the hypothesis. Cases of bacteriologically confirmed pulmonary tuberculosis (TB) (n=183) and TBM (n=175), and cord blood controls (n=389) were enrolled in Vietnam. TLR2 genotype 597CC was associated with susceptibility to TB (odds ratio (OR)=2.22, 95% confidence interval (CI): 1.23−3.99). The association was found with meningeal rather than pulmonary TB (TBM vs control, OR=3.26, 95% CI: 1.72−6.18), and was strongest when miliary TB was found on chest radiography (controls vs TBM with miliary TB, OR=5.28, 95% CI: 2.20−12.65). Furthermore, the association increased with the severity of neurologic symptoms (grade I TBM, OR=1.93, 95% CI: 0.54−6.92; grade II, OR=3.32, 95% CI: 0.84−13.2; and grade III, OR=5.70, 95% CI: 1.81−18.0). These results demonstrate a strong association of TLR2 SNP T597C with the development of TBM and miliary TB and indicate that TLR2 influences the dissemination of M. tuberculosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hosoglu S, Geyik MF, Balik I, Aygen B, Erol S, Aygencel TG et al. Predictors of outcome in patients with tuberculous meningitis. Int J Tuberc Lung Dis 2002; 6: 64–70.

    CAS  PubMed  Google Scholar 

  2. Thwaites GE, Nguyen DB, Nguyen HD, Hoang TQ, Do TT, Nguyen TC et al. Dexamethasone for the treatment of tuberculous meningitis in adolescents and adults. N Engl J Med 2004; 351: 1741–1751.

    Article  CAS  Google Scholar 

  3. Isaman M . A Clinician's Guide to Tuberculosis. Lippincott Williams and Wilkins: Philadelphia, 2000.

    Google Scholar 

  4. Bloom BR, Small PM . The evolving relation between humans and Mycobacterium tuberculosis. N Engl J Med 1998; 338: 677–678.

    Article  CAS  Google Scholar 

  5. Bellamy R . Susceptibility to mycobacterial infections: the importance of host genetics. Genes Immun 2003; 4: 4–11.

    Article  CAS  Google Scholar 

  6. Bellamy RJ, Hill AV . Host genetic susceptibility to human tuberculosis. Novartis Found Symp 1998; 217: 3–13; discussion 13−23.

    Article  CAS  Google Scholar 

  7. Casanova JL, Abel L . Genetic dissection of immunity to mycobacteria: the human model. Annu Rev Immunol 2002; 20: 581–620.

    Article  CAS  Google Scholar 

  8. Cooke GS, Hill AV . Genetics of susceptibility to human infectious disease. Nat Rev Genet 2001; 2: 967–977.

    Article  CAS  Google Scholar 

  9. van Crevel R, Ottenhoff TH, van der Meer JW . Innate immunity to Mycobacterium tuberculosis. Clin Microbiol Rev 2002; 15: 294–309.

    Article  CAS  Google Scholar 

  10. Fernando SL, Saunders BM, Sluyter R, Skarratt KK, Goldberg H, Marks GB et al. A polymorphism in the P2X7 gene increases susceptibility to extrapulmonary tuberculosis. Am J Respir Crit Care Med 2006; 175: 360–366.

    Article  Google Scholar 

  11. Cook DN, Pisetsky DS, Schwartz DA . Toll-like receptors in the pathogenesis of human disease. Nat Immunol 2004; 5: 975–979.

    Article  CAS  Google Scholar 

  12. Hawn TR, Verbon A, Janer M, Zhao LP, Beutler B, Aderem A . Toll-like receptor 4 polymorphisms are associated with resistance to Legionnaires' disease. Proc Natl Acad Sci USA 2005; 102: 2487–2489.

    Article  CAS  Google Scholar 

  13. Hawn TR, Verbon A, Lettinga KD, Zhao LP, Li SS, Laws RJ et al. A common dominant TLR5 stop codon polymorphism abolishes flagellin signaling and is associated with susceptibility to Legionnaires' Disease. J Exp Med 2003; 198: 1563–1572.

    Article  CAS  Google Scholar 

  14. Picard C, Puel A, Bonnet M, Ku CL, Bustamante J, Yang K et al. Pyogenic bacterial infections in humans with IRAK-4 deficiency. Science 2003; 299: 2076–2079.

    Article  CAS  Google Scholar 

  15. Medzhitov R . Toll-like receptors and innate immunity. Nat Rev Immunol 2001; 1: 135–145.

    Article  CAS  Google Scholar 

  16. Takeda K, Takeuchi O, Akira S . Recognition of lipopeptides by Toll-like receptors. J Endotoxin Res 2002; 8: 459–463.

    Article  CAS  Google Scholar 

  17. Akira S, Takeda K . Toll-like receptor signalling. Nat Rev Immunol 2004; 4: 499–511.

    Article  CAS  Google Scholar 

  18. Means TK, Wang S, Lien E, Yoshimura A, Golenbock DT, Fenton MJ . Human toll-like receptors mediate cellular activation by Mycobacterium tuberculosis. J Immunol 1999; 163: 3920–3927.

    CAS  Google Scholar 

  19. Bafica A, Scanga CA, Feng CG, Leifer C, Cheever A, Sher A . TLR9 regulates Th1 responses and cooperates with TLR2 in mediating optimal resistance to Mycobacterium tuberculosis. J Exp Med 2005; 202: 1715–1724.

    Article  CAS  Google Scholar 

  20. Heldwein KA, Liang MD, Andresen TK, Thomas KE, Marty AM, Cuesta N et al. TLR2 and TLR4 serve distinct roles in the host immune response against Mycobacterium bovis BCG. J Leukoc Biol 2003; 74: 277–286.

    Article  CAS  Google Scholar 

  21. Sugawara I, Yamada H, Mizuno S, Takeda K, Akira S . Mycobacterial infection in MyD88-deficient mice. Microbiol Immunol 2003; 47: 841–847.

    Article  CAS  Google Scholar 

  22. Ogus AC, Yoldas B, Ozdemir T, Uguz A, Olcen S, Keser I et al. The Arg753GLn polymorphism of the human toll-like receptor 2 gene in tuberculosis disease. Eur Respir J 2004; 23: 219–223.

    Article  CAS  Google Scholar 

  23. Schroder NW, Diterich I, Zinke A, Eckert J, Draing C, von Baehr V et al. Heterozygous Arg753Gln polymorphism of human TLR-2 impairs immune activation by Borrelia burgdorferi and protects from late stage Lyme disease. J Immunol 2005; 175: 2534–2540.

    Article  Google Scholar 

  24. Yim JJ, Lee HW, Lee HS, Kim YW, Han SK, Shim YS et al. The association between microsatellite polymorphisms in intron II of the human Toll-like receptor 2 gene and tuberculosis among Koreans. Genes Immun 2006; 7: 150–155.

    Article  CAS  Google Scholar 

  25. Hawn TR, Dunstan SJ, Thwaites GE, Simmons CP, Thuong NT, Lan NT et al. A polymorphism in Toll-interleukin 1 receptor domain containing adaptor protein is associated with susceptibility to meningeal tuberculosis. J Infect Dis 2006; 194: 1127–1134.

    Article  CAS  Google Scholar 

  26. Khor CC, Chapman SJ, Vannberg FO, Dunne A, Murphy C, Ling EY et al. A Mal functional variant is associated with protection against invasive pneumococcal disease, bacteremia, malaria and tuberculosis. Nat Genet 2007; 39: 523–528.

    Article  CAS  Google Scholar 

  27. MRC. Streptomycin treatment of pulmonary tuberculosis. BMJ 1948; 2: 769–782.

    Article  Google Scholar 

  28. Yim JJ, Ding L, Schaffer AA, Park GY, Shim YS, Holland SM . A microsatellite polymorphism in intron 2 of human Toll-like receptor 2 gene: functional implications and racial differences. FEMS Immunol Med Microbiol 2004; 40: 163–169.

    Article  CAS  Google Scholar 

  29. Eva Lorenz JPM, Kristyn LC . A novel polymorphism in the Toll-like receptor 2 gene and its potential association with Staphylococcal infection. Infect Immun 2000; 68: 3398–6401.

    Google Scholar 

  30. Haga H, Yamada R, Nakamura Y . Gene-base SNP discovery as part of the Japanese Millennium Genome Project: identification of 190562 genetic variations in the human genome. J H Genet 2002; 47: 605–610.

    Article  CAS  Google Scholar 

  31. Chackerian AA, Alt JM, Perera TV, Dascher CC, Behar SM . Dissemination of Mycobacterium tuberculosis is influenced by host factors and precedes the initiation of T-cell immunity. Infect Immun 2002; 70: 4501–4509.

    Article  CAS  Google Scholar 

  32. Rich AR, McCordock HA . The pathogenesis of tuberculous meningitis. Bull John Hopkins Hosp 1933; 52: 5–37.

    Google Scholar 

  33. Thwaites G, Chau TT, Mai NT, Drobniewski F, McAdam K, Farrar J . Tuberculous meningitis. J Neurol Neurosurg Psychiatry 2000; 68: 289–299.

    Article  CAS  Google Scholar 

  34. Flynn JL, Chan J . Immunology of tuberculosis. Annu Rev Immunol 2001; 19: 93–129.

    Article  CAS  Google Scholar 

  35. Sharief MK, Ciardi M, Thompson EJ . Blood–brain barrier damage in patients with bacterial meningitis: association with tumor necrosis factor-alpha but not interleukin-1 beta. J Infect Dis 1992; 166: 350–358.

    Article  CAS  Google Scholar 

  36. Tsenova L, Sokol K, Freedman VH, Kaplan G . A combination of thalidomide plus antibiotics protects rabbits from mycobacterial meningitis-associated death. J Infect Dis 1998; 177: 1563–1572.

    Article  CAS  Google Scholar 

  37. Simmons CP, Thwaites GE, Quyen NT, Torok E, Hoang DM, Chau TT et al. Pretreatment intracerebral and peripheral blood immune responses in Vietnamese adults with tuberculous meningitis: diagnostic value and relationship to disease severity and outcome. J Immunol 2006; 176: 2007–2014.

    Article  CAS  Google Scholar 

  38. Simmons CP, Thwaites GE, Quyen NT, Chau TT, Mai PP, Dung NT et al. The clinical benefit of adjunctive dexamethasone in tuberculous meningitis is not associated with measurable attenuation of peripheral or local immune responses. J Immunol 2005; 175: 579–590.

    Article  CAS  Google Scholar 

  39. Clayton D, Hills M . Statistical Models in Epidemiology. Oxford University Press: UK, 1993.

    Google Scholar 

  40. Schwartz G . Estimating the dimension of a model. Ann Stat 1978; 6: 461–464.

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the directors and the staff of the Hospital for Tropical Disease, Pham Ngoc Thach Hospital for Tuberculosis and Lung Disease and Hung Vuong Hospital, Viet Nam for the clinical and microbiological work associated with this study. We thank the Vietnamese individuals who took part in this study. We also thank Marta Janer and Sarah Li (Institute of Systems Biology, USA) for expert assistance in genotyping. The Wellcome Trust and the DANA foundation funded this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S J Dunstan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thuong, N., Hawn, T., Thwaites, G. et al. A polymorphism in human TLR2 is associated with increased susceptibility to tuberculous meningitis. Genes Immun 8, 422–428 (2007). https://doi.org/10.1038/sj.gene.6364405

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6364405

Keywords

This article is cited by

Search

Quick links