Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A distinct inflammatory gene expression profile in patients with psoriatic arthritis

Abstract

Psoriatic arthritis (PsA) is a systemic inflammatory condition featuring polyarthritis associated with psoriasis. Apart from clinical indicators, few biomarkers exist to aid in the diagnosis and management of PsA. We hypothesized that whole blood gene expression profiling would provide new diagnostic markers and/or insights into pathogenesis of the disease. We compared whole blood gene expression profiles in PsA patients and in age-matched controls. We identified 310 differentially expressed genes, the majority of which are upregulated in PsA patients. The PsA expression profile does not significantly overlap with profiles derived from patients with rheumatoid arthritis or systemic lupus erythematosus. Logistic regression identified two lymphocyte-specific genes (zinc-finger protein 395 and phosphoinositide-3-kinase 2B) that discriminate PsA patients from normal controls. In addition, a highly coregulated cluster of overexpressed genes implicated in protein kinase A regulation strongly correlates with erythrocyte sedimentation rate. Other clusters of coregulated, yet suppressed genes in PsA patient blood include molecules involved in T-cell signaling. Finally, differentially expressed genes in PsA fall into diverse functional categories, but many downregulated genes belong to a CD40 signaling pathway. Together, the data suggest that gene expression profiles of PsA patient blood contain candidate novel disease markers and clues to pathogenesis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Klippel JH . Primer on the Rheumatic Diseases, 11th edn. Arthritis Foundation, 1997.

    Google Scholar 

  2. Gelfand JM, Gladman DD, Mease PJ, Smith N, Margolis DJ, Nijsten T et al. Epidemiology of psoriatic arthritis in the population of the United States. J Am Acad Dermatol 2005; 53 (4): 573–577.

    Article  PubMed  Google Scholar 

  3. Rahman P, Elder JT . Genetic epidemiology of psoriasis and psoriatic arthritis. Ann Rheum Dis 2005; 64 (Suppl 2): ii37–ii39.

    PubMed  PubMed Central  Google Scholar 

  4. Ritchlin CT . Pathogenesis of psoriatic arthritis. Curr Opin Rheumatol 2005; 17: 406–412.

    Article  PubMed  Google Scholar 

  5. Tomfohrde J, Silverman A, Barnes R, Fernandez-Vina MA, Young M, Lory D et al. Gene for familial psoriasis susceptibility mapped to the distal end of human chromosome 17q. Science 1994; 264 (5162): 1141–1145.

    Article  CAS  PubMed  Google Scholar 

  6. Nash PT, Florin TH . Tumour necrosis factor inhibitors. Med J Aust 2005; 183 (4): 205–208.

    Article  PubMed  Google Scholar 

  7. Moser KL, Gaffney PM, Grandits ME, Emamian ES, Machado DB, Baechler EC et al. The use of microarrays to study autoimmunity. J Investig Dermatol Symp Proc 2004; 9 (1): 18–22.

    Article  PubMed  Google Scholar 

  8. Baechler EC, Batliwalla FM, Karypis G, Gaffney PM, Ortmann WA, Espe KJ et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci USA 2003; 100 (5): 2610–2615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Batliwalla FM, Baechler EC, Xiao X, Li W, Balasubramanian S, Khalili H et al. Peripheral blood gene expression profiling in rheumatoid arthritis. Genes Immun 2005; 6 (5): 388–397.

    Article  CAS  PubMed  Google Scholar 

  10. Bennett L, Palucka AK, Arce E, Cantrell V, Borvak J, Banchereau J et al. Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J Exp Med 2003; 197 (6): 711–723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Crow MK, Kirou KA, Wohlgemuth J . Microarray analysis of interferon-regulated genes in SLE. Autoimmunity 2003; 36 (8): 481–490.

    Article  CAS  PubMed  Google Scholar 

  12. Feldman M, Maini RN . Anti-TNFalpha therapy of rheumatoid arthritis: what have we learned? Annu Rev Immunol 2001; 19: 163–196.

    Article  Google Scholar 

  13. Ritchlin C, Haas-Smith S, Hicks D, Cappuccio J, Osterland C, Looney R . Patterns of cytokine production in psoriatic synovium. J Rheumatol 1998; 25 (8): 1544–1552.

    CAS  PubMed  Google Scholar 

  14. Harada K, Truong AB, Cai T, Khavari PA . The class II phosphoinositide 3-kinase C2beta is not essential for epidermal differentiation. Mol Cell Biol 2005; 25 (24): 11122–11130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tanaka K, Shouguchi-Miyata J, Miyamoto N, Ikeda JE . Novel nuclear shuttle proteins, HDBP1 and HDBP2, bind to neuronal cell-specific cis-regulatory element in the promoter for the human Huntington's disease gene. J Biol Chem 2004; 279 (8): 7275–7286.

    Article  CAS  PubMed  Google Scholar 

  16. Alto NM, Soderling J, Scott JD . Rab32 is an A-kinase anchoring protein and participates in mitochondrial dynamics. J Cell Biol 2002; 158 (4): 659–668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kohler K, Louvard D, Zahraoui A . Rab13 regulates PKA signaling during tight junction assembly. J Cell Biol 2004; 165 (2): 175–180.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Bohm I . Decrease of B-cells and autoantibodies after low-dose methotrexate. Biomed Pharmacother 2003; 57 (7): 278–281.

    Article  PubMed  CAS  Google Scholar 

  19. Koczan D, Guthke R, Thiesen HJ, Ibrahim SM, Kundt G, Krentz H et al. Gene expression profiling of peripheral blood mononuclear leukocytes from psoriasis patients identifies new immune regulatory molecules. Eur J Dermatol 2005; 15 (4): 251–257.

    CAS  PubMed  Google Scholar 

  20. Gu J, Marker-Hermann E, Baeten D, Tsai WC, Gladman D, Xiong M et al. A 588-gene microarray analysis of the peripheral blood mononuclear cells of spondyloarthropathy patients. Rheumatology 2002; 41: 759–766.

    Article  CAS  PubMed  Google Scholar 

  21. Baechler EC, Batliwalla FM, Karypis G, Gaffney PM, Moser K, Ortmann WA et al. Expression levels for many genes in human peripheral blood cells are highly sensitive to ex vivo incubation. Genes Immun 2004; 5: 347–353.

    Article  CAS  PubMed  Google Scholar 

  22. Partsch G, Steiner G, Leeb BF, Dunky A, Broll H, Smolen JS . Highly increased levels of tumor necrosis factor-alpha and other proinflammatory cytokines in psoriatic arthritis synovial fluid. J Rheumatol 1997; 24 (3): 518–523.

    CAS  PubMed  Google Scholar 

  23. Ettehadi P, Greaves MW, Wallach D, Aderka D, Camp RD . Elevated tumor necrosis factor-alpha biological activity in psoriatic skin lesions. Clin Exp Immunol 1994; 96: 146–151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Panayi GS . Immunology of psoriasis and psoriatic arthritis. Baillieres Clin Rheumatol 1994; 8: 419–427.

    Article  CAS  PubMed  Google Scholar 

  25. Call ME, Wucherpfennig KW . The T Cell receptor: critical role of the membrane environment in receptor assembly and function. Annu Rev Immunol 2005; 23: 101–125.

    Article  CAS  PubMed  Google Scholar 

  26. Fukushima A, Yamaguchi T, Ishida W, Fukata K, Udaka K, Ueno H . Mice lacking the IFN-gamma receptor or fyn develop severe experimental autoimmune uveoretinitis characterized by different immune responses. Immunogenetics 2005; 57 (5): 337–343.

    Article  CAS  PubMed  Google Scholar 

  27. Davidson D, Shi X, Zhang S, Wang H, Nemer M, Ono N et al. Genetic evidence linking SAP, the X-linked lymphoproliferative gene product, to Src-related kinase FynT in T(H)2 cytokine regulation. Immunity 2004; 21 (5): 707–717.

    Article  CAS  PubMed  Google Scholar 

  28. Welke J, Zavazava N . P59(fyn) is upregulated in anergic CD8+ T cells. Hum Immunol 2002; 63 (10): 834–843.

    Article  CAS  PubMed  Google Scholar 

  29. Alarcon-Riquelme ME . Role of RUNX in autoimmune diseases linking rheumatoid arthritis, psoriasis and lupus. Arthritis Res Ther 2004; 6: 169–173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Brenner O, Levanon D, Negreanu V, Golubkov O, Fainaru O, Woolf E et al. Loss of Runx3 function in leukocytes is associated with spontaneously developed colitis and gastric mucosal hyperplasia. Proc Natl Acad Sci USA 2004; 101 (45): 16016–16021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bae SC, Lee YH . Phosphorylation, acetylation and ubiquitination: The molecular basis of RUNX regulation. Gene 2006; 366 (1): 58–66.

    Article  CAS  PubMed  Google Scholar 

  32. Kohu K, Sato T, Ohno S, Hayashi K, Uchino R, Abe N et al. Overexpression of the Runx3 transcription factor increases the proportion of mature thymocytes of the CD8 single-positive lineage. J Immunol 2005; 174: 2627–2636.

    Article  CAS  PubMed  Google Scholar 

  33. Torgersen KM, Vang T, Abrahamsen H, Yaqub S, Tasken K . Molecular mechanisms for protein kinase A-mediated modulation of immune function. Cell Signal 2002; 14 (1): 1–9.

    Article  CAS  PubMed  Google Scholar 

  34. Toubi E, Shoenfeld Y . The role of CD40-CD154 interactions in autoimmunity and the benefit of disrupting this pathway. Autoimmunity 2004; 37: 457–464.

    Article  CAS  PubMed  Google Scholar 

  35. Desai-Mehta A, Lu L, Ramsey-Goldman R, Datta SK . Hyperexpression of CD40 ligand by B and T cells in human lupus and its role in pathogenic autoantibody production. J Clin Invest 1996; 97 (9): 2063–2073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Harigai M, Hara M, Nakazawa S, Fukasawa C, Ohta S, Sugiura T et al. Ligation of CD40 induced tumor necrosis factor-alpha in rheumatoid arthritis: a novel mechanism of activation of synoviocytes. J Rheumatol 1999; 26 (5): 1035–1043.

    CAS  PubMed  Google Scholar 

  37. Pasch MC, Timar KK, van Meurs M, Heydendael VM, Bos JD, Laman JD et al. In situ demonstration of CD40- and CD154-positive cells in psoriatic lesions and keratinocyte production of chemokines by CD40 ligation in vitro. J Pathol 2004; 203 (3): 839–848.

    Article  CAS  PubMed  Google Scholar 

  38. Koreck A, Suranyi A, Szony BJ, Farkas A, Bata-Csorgo Z, Kemeny L et al. CD3+CD56+ NK T cells are significantly decreased in the peripheral blood of patients with psoriasis. Clin Exp Immunol 2002; 127: 176–182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Spadaro A, Scrivo R, Moretti T, Bernardini G, Riccieri V, Taccari E et al. Natural killer cells and gamma/delta T cells in synovial fluid and in peripheral blood of patients with psoriatic arthritis. Clin Exp Rheum 2004; 22: 389–394.

    CAS  Google Scholar 

  40. Lowes MA, Chamian F, Abello MV, Fuentes-Duculan J, Lin SL, Nussbaum R et al. Increase in TNF-alpha and inducible nitric oxide synthase-expressing dendritic cells in psoriasis and reduction with efalizumab (anti-CD11a). Proc Natl Acad Sci USA 2005; 102 (52): 19057–19062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ohta Y, Hamada Y . In situ Expression of CD40 and CD40 ligand in psoriasis. Dermatology 2004; 209 (1): 21–28.

    Article  CAS  PubMed  Google Scholar 

  42. Eisen MB, Spellman PT, Brown PO, Botstein D . Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 1998; 95 (25): 14863–14868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Dr Kathy Moser and Jason Bauer for helpful discussion, Catherine Slattery for technical assistance with sample preparation, and the patients who participated in the study. Funding was provided by the Minnesota Partnership for Biotechnology and Medical Genomics, and the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E J Peterson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stoeckman, A., Baechler, E., Ortmann, W. et al. A distinct inflammatory gene expression profile in patients with psoriatic arthritis. Genes Immun 7, 583–591 (2006). https://doi.org/10.1038/sj.gene.6364334

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6364334

Keywords

This article is cited by

Search

Quick links