Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Full Paper
  • Published:

Sequence analysis of the mannose-binding lectin (MBL2) gene reveals a high degree of heterozygosity with evidence of selection

Abstract

Human mannose-binding protein (MBL) is a component of innate immunity. To capture the common genetic variants of MBL2, we resequenced a 10.0 kb region that includes MBL2 in 102 individuals representing four major US ethnic groups. In all, 87 polymorphic sites were observed, indicating a high level of heterozygosity (total π=18.3 × 10−4). Estimates of linkage disequilibrium across MBL2 indicate that it is divided into two blocks, with a probable recombination hot spot in the 3′ end. Three non-synonymous SNPs in exon 1 of the encoding MBL2 gene and three upstream SNPs form common ‘secretor haplotypes’ that can predict circulating levels. Common variants have been associated with increased susceptibility to infection and autoimmune diseases. The high frequencies of B, C and D alleles in certain populations suggest a possible selective advantage for heterozygosity. There is limited diversity of haplotype structure; the ‘secretor haplotypes’ lie on a restricted number of extended haplotypes, which could include additional linked SNPs, which might also have possible functional implications. There is evidence for gene conversion in the region between the two blocks, in the last exon. Our data should form the basis for conducting MBL2 candidate gene association studies using a locus-wide approach.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 5
Figure 3
Figure 4
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Epstein J, Eichbaum Q, Sheriff S, Ezekowitz RA . The collectins in innate immunity. Curr Opin Immunol 1996; 8: 29–35.

    CAS  PubMed  Google Scholar 

  2. Jack DL, Turner MW . Anti-microbial activities of mannose-binding lectin. Biochem Soc Trans 2003; 31: 753–757.

    CAS  PubMed  Google Scholar 

  3. Neth O, Jack DL, Johnson M, Klein NJ, Turner MW . Enhancement of complement activation and opsonophagocytosis by complexes of mannose-binding lectin with mannose-binding lectin-associated serine protease after binding to Staphylococcus aureus. J Immunol 2002; 169: 4430–4436.

    CAS  PubMed  Google Scholar 

  4. Townsend R, Read RC, Turner MW, Klein NJ, Jack DL . Differential recognition of obligate anaerobic bacteria by human mannose-binding lectin. Clin Exp Immunol 2001; 124: 223–228.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. van Emmerik LC, Kuijper EJ, Fijen CA, Dankert J, Thiel S . Binding of mannan-binding protein to various bacterial pathogens of meningitis. Clin Exp Immunol 1994; 97: 411–416.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Ikeda K, Sannoh T, Kawasaki N, Kawasaki T, Yamashina I . Serum lectin with known structure activates complement through the classical pathway. J Biol Chem 1987; 262: 7451–7454.

    CAS  PubMed  Google Scholar 

  7. Petersen SV, Thiel S, Jensenius JC . The mannan-binding lectin pathway of complement activation: biology and disease association. Mol Immunol 2001; 38: 133–149.

    CAS  PubMed  Google Scholar 

  8. Thiel S, Vorup-Jensen T, Stover CM et al. A second serine protease associated with mannan-binding lectin that activates complement. Nature 1997; 386: 506–510.

    CAS  PubMed  Google Scholar 

  9. Madsen HO, Garred P, Thiel S et al. Interplay between promoter and structural gene variants control basal serum level of mannan-binding protein. J Immunol 1995; 155: 3013–3020.

    CAS  PubMed  Google Scholar 

  10. Madsen HO, Satz ML, Hogh B, Svejgaard A, Garred P . Different molecular events result in low protein levels of mannan-binding lectin in populations from southeast Africa and South America. J Immunol 1998; 161: 3169–3175.

    CAS  PubMed  Google Scholar 

  11. Sastry K, Herman GA, Day L et al. The human mannose-binding protein gene. Exon structure reveals its evolutionary relationship to a human pulmonary surfactant gene and localization to chromosome 10. J Exp Med 1989; 170: 1175–1189.

    CAS  PubMed  Google Scholar 

  12. Madsen HO, Garred P, Kurtzhals JA et al. A new frequent allele is the missing link in the structural polymorphism of the human mannan-binding protein. Immunogenetics 1994; 40: 37–44.

    CAS  PubMed  Google Scholar 

  13. Sumiya M, Super M, Tabona P et al. Molecular basis of opsonic defect in immunodeficient children. Lancet 1991; 337: 1569–1570.

    CAS  PubMed  Google Scholar 

  14. Lipscombe RJ, Beatty DW, Ganczakowski M et al. Mutations in the human mannose-binding protein gene: frequencies in several population groups. Eur J Hum Genet 1996; 4: 13–19.

    CAS  PubMed  Google Scholar 

  15. Lipscombe RJ, Sumiya M, Hill AV et al. High frequencies in African and non-African populations of independent mutations in the mannose binding protein gene. Hum Mol Genet 1992; 1: 709–715.

    CAS  PubMed  Google Scholar 

  16. Wallis R . Structural and functional aspects of complement activation by mannose-binding protein. Immunobiology 2002; 205: 433–445.

    CAS  PubMed  Google Scholar 

  17. Wallis R, Drickamer K . Molecular determinants of oligomer formation and complement fixation in mannose-binding proteins. J Biol Chem 1999; 274: 3580–3589.

    CAS  PubMed  Google Scholar 

  18. Wallis R, Cheng JY . Molecular defects in variant forms of mannose-binding protein associated with immunodeficiency. J Immunol 1999; 163: 4953–4959.

    CAS  PubMed  Google Scholar 

  19. Matsushita M, Ezekowitz RA, Fujita T . The Gly-54 → Asp allelic form of human mannose-binding protein (MBP) fails to bind MBP-associated serine protease. Biochem J 1995; 311: 1021–1023.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Larsen F, Madsen HO, Sim RB, Koch C, Garred P . Disease-associated mutations in human mannose-binding lectin compromise oligomerisation and activity of the final protein. J Biol Chem 2004, (published online).

  21. Garred P, Richter C, Andersen AB et al. Mannan-binding lectin in the sub-Saharan HIV and tuberculosis epidemics. Scand J Immunol 1997; 46: 204–208.

    Article  CAS  PubMed  Google Scholar 

  22. Hoal-van Helden EG, Epstein J, Victor TC et al. Mannose-binding protein B allele confers protection against tuberculous meningitis. Pediatr Res 1999; 45: 459–464.

    CAS  PubMed  Google Scholar 

  23. Santos IK, Costa CH, Krieger H et al. Mannan-binding lectin enhances susceptibility to visceral leishmaniasis. Infect Immun 2001; 69: 5212–5215.

    CAS  PubMed  Google Scholar 

  24. Selvaraj P, Narayanan PR, Reetha AM . Association of functional mutant homozygotes of the mannose binding protein gene with susceptibility to pulmonary tuberculosis in India. Tuber Lung Dis 1999; 79: 221–227.

    CAS  PubMed  Google Scholar 

  25. Soborg C, Madsen HO, Andersen AB, Lillebaek T, Kok-Jensen A, Garred P . Mannose-binding lectin polymorphisms in clinical tuberculosis. J Infect Dis 2003; 188: 777–782.

    CAS  PubMed  Google Scholar 

  26. Kelly P, Jack DL, Naeem A et al. Mannose-binding lectin is a component of innate mucosal defense against Cryptosporidium parvum in AIDS. Gastroenterology 2000; 119: 1236–1242.

    CAS  PubMed  Google Scholar 

  27. Luty AJ, Kun JF, Kremsner PG . Mannose-binding lectin plasma levels and gene polymorphisms in Plasmodium falciparum malaria. J Infect Dis 1998; 178: 1221–1224.

    CAS  PubMed  Google Scholar 

  28. Garred P, Madsen HO, Hofmann B, Svejgaard A . Increased frequency of homozygosity of abnormal mannan-binding-protein alleles in patients with suspected immunodeficiency. Lancet 1995; 346: 941–943.

    CAS  PubMed  Google Scholar 

  29. Summerfield JA, Ryder S, Sumiya M et al. Mannose binding protein gene mutations associated with unusual and severe infections in adults. Lancet 1995; 345: 886–889.

    Article  CAS  PubMed  Google Scholar 

  30. Summerfield JA, Sumiya M, Levin M, Turner MW . Association of mutations in mannose binding protein gene with childhood infection in consecutive hospital series. BMJ 1997; 314: 1229–1232.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Eisen DP, Minchinton RM . Impact of mannose-binding lectin on susceptibility to infectious diseases. Clin Infect Dis 2003; 37: 1496–1505.

    CAS  PubMed  Google Scholar 

  32. Mullighan CG, Heatley S, Doherty K et al. Mannose-binding lectin gene polymorphisms are associated with major infection following allogeneic hemopoietic stem cell transplantation. Blood 2002; 99: 3524–3529.

    CAS  PubMed  Google Scholar 

  33. Neth O, Hann I, Turner MW, Klein NJ . Deficiency of mannose-binding lectin and burden of infection in children with malignancy: a prospective study. Lancet 2001; 358: 614–618.

    CAS  PubMed  Google Scholar 

  34. Peterslund NA, Koch C, Jensenius JC, Thiel S . Association between deficiency of mannose-binding lectin and severe infections after chemotherapy. Lancet 2001; 358: 637–638.

    CAS  PubMed  Google Scholar 

  35. Garred P, Madsen HO, Marquart H et al. Two edged role of mannose binding lectin in rheumatoid arthritis: a cross sectional study. J Rheumatol 2000; 27: 26–34.

    CAS  PubMed  Google Scholar 

  36. Garred P, Voss A, Madsen HO, Junker P . Association of mannose-binding lectin gene variation with disease severity and infections in a population-based cohort of systemic lupus erythematosus patients. Genes Immun 2001; 2: 442–450.

    CAS  PubMed  Google Scholar 

  37. Graudal NA, Homann C, Madsen HO et al. Mannan binding lectin in rheumatoid arthritis. A longitudinal study. J Rheumatol 1998; 25: 629–635.

    CAS  PubMed  Google Scholar 

  38. Davies J, Neth O, Alton E, Klein N, Turner M . Differential binding of mannose-binding lectin to respiratory pathogens in cystic fibrosis. Lancet 2000; 355: 1885–1886.

    CAS  PubMed  Google Scholar 

  39. Foster CB, Lehrnbecher T, Mol F et al. Host defense molecule polymorphisms influence the risk for immune-mediated complications in chronic granulomatous disease. J Clin Invest 1998; 102: 2146–2155.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Garred P, Pressler T, Madsen HO et al. Association of mannose-binding lectin gene heterogeneity with severity of lung disease and survival in cystic fibrosis. J Clin Invest 1999; 104: 431–437.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Schneider JA, Pungliya MS, Choi JY et al. DNA variability of human genes. Mech Ageing Dev 2003; 124: 17–25.

    CAS  PubMed  Google Scholar 

  42. Goddard KA, Hopkins PJ, Hall JM, Witte JS . Linkage disequilibrium and allele-frequency distributions for 114 single-nucleotide polymorphisms in five populations. Am J Hum Genet 2000; 66: 216–234.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Nickerson DA, Taylor SL, Weiss KM et al. DNA sequence diversity in a 9.7-kb region of the human lipoprotein lipase gene. Nat Genet 1998; 19: 233–240.

    CAS  PubMed  Google Scholar 

  44. Subrahmanyan L, Eberle MA, Clark AG, Kruglyak L, Nickerson DA . Sequence variation and linkage disequilibrium in the human T-cell receptor beta (TCRB) locus. Am J Hum Genet 2001; 69: 381–395.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Jorde LB, Watkins WS, Bamshad MJ . Population genomics: a bridge from evolutionary history to genetic medicine. Hum Mol Genet 2001; 10: 2199–2207.

    CAS  PubMed  Google Scholar 

  46. Hacia JG, Fan JB, Ryder O et al. Determination of ancestral alleles for human single-nucleotide polymorphisms using high-density oligonucleotide arrays. Nat Genet 1999; 22: 164–167.

    CAS  PubMed  Google Scholar 

  47. Nachman MW, Bauer VL, Crowell SL, Aquadro CF . DNA variability and recombination rates at X-linked loci in humans. Genetics 1998; 150: 1133–1141.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Tishkoff SA, Verrelli BC . Patterns of human genetic diversity: implications for human evolutionary history and disease. Annu Rev Genomics Hum Genet 2003; 4: 293–340.

    CAS  PubMed  Google Scholar 

  49. Hamblin MT, Thompson EE, Di Rienzo A . Complex signatures of natural selection at the Duffy blood group locus. Am J Hum Genet 2002; 70: 369–383.

    PubMed  Google Scholar 

  50. Wall JD, Pritchard JK . Haplotype blocks and linkage disequilibrium in the human genome. Nat Rev Genet 2003; 4: 587–597.

    CAS  PubMed  Google Scholar 

  51. Stephens M, Donnelly P . A comparison of Bayesian methods for haplotype reconstruction from population genotype data. Am J Hum Genet 2003; 73: 1162–1169.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Stephens JC . Statistical methods of DNA sequence analysis: detection of intragenic recombination or gene conversion. Mol Biol Evol 1985; 2: 539–556.

    CAS  PubMed  Google Scholar 

  53. Andolfatto P, Nordborg M . The effect of gene conversion on intralocus associations. Genetics 1998; 148: 1397–1399.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Bonnen PE, Wang PJ, Kimmel M, Chakraborty R, Nelson DL . Haplotype and linkage disequilibrium architecture for human cancer-associated genes. Genome Res 2002; 12: 1846–1853.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Clark AG, Weiss KM, Nickerson DA et al. Haplotype structure and population genetic inferences from nucleotide-sequence variation in human lipoprotein lipase. Am J Hum Genet 1998; 63: 595–612.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Gabriel SB, Schaffner SF, Nguyen H et al. The structure of haplotype blocks in the human genome. Science 2002; 296: 2225–2229.

    CAS  PubMed  Google Scholar 

  57. Reich DE, Cargill M, Bolk S et al. Linkage disequilibrium in the human genome. Nature 2001; 411: 199–204.

    CAS  PubMed  Google Scholar 

  58. Chanock S, Taylor JG . Using genetic variation to study immunomodulation. Curr Opin Pharmacol 2002; 2: 463–469.

    CAS  PubMed  Google Scholar 

  59. Sachidanandam R, Weissman D, Schmidt SC et al. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 2001; 409: 928–933.

    CAS  PubMed  Google Scholar 

  60. Przeworski M, Hudson RR, Di Rienzo A . Adjusting the focus on human variation. Trends Genet 2000; 16: 296–302.

    CAS  PubMed  Google Scholar 

  61. Fu YX, Li WH . Statistical tests of neutrality of mutations. Genetics 1993; 133: 693–709.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Kruglyak L, Nickerson DA . Variation is the spice of life. Nat Genet 2001; 27: 234–236.

    CAS  PubMed  Google Scholar 

  63. Salisbury BA, Pungliya M, Choi JY, Jiang R, Sun XJ, Stephens JC . SNP and haplotype variation in the human genome. Mutat Res 2003; 526: 53–61.

    CAS  PubMed  Google Scholar 

  64. Cavalli-Sforza LL, Menozzi P, Piazza A . The History and Geography of Human Genes. Princeton University Press: Princeton, 1994.

    Google Scholar 

  65. Barbujani G, Bertorelle G . Genetics and the population history of Europe. Proc Natl Acad Sci USA 2001; 98: 22–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Simonsen KL, Churchill GA, Aquadro CF . Properties of statistical tests of neutrality for DNA polymorphism data. Genetics 1995; 141: 413–429.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Reich DE, Schaffner SF, Daly MJ et al. Human genome sequence variation and the influence of gene history, mutation and recombination. Nat Genet 2002; 32: 135–142.

    CAS  PubMed  Google Scholar 

  68. Taillon-Miller P, Bauer-Sardina I, Saccone NL et al. Juxtaposed regions of extensive and minimal linkage disequilibrium in human Xq25 and Xq28. Nat Genet 2000; 25: 324–328.

    CAS  PubMed  Google Scholar 

  69. Dawson E, Abecasis GR, Bumpstead S et al. A first-generation linkage disequilibrium map of human chromosome 22. Nature 2002; 418: 544–548.

    CAS  PubMed  Google Scholar 

  70. Patil N, Berno AJ, Hinds DA et al. Blocks of limited haplotype diversity revealed by high-resolution scanning of human chromosome 21. Science 2001; 294: 1719–1723.

    CAS  PubMed  Google Scholar 

  71. Phillips MS, Lawrence R, Sachidanandam R et al. Chromosome-wide distribution of haplotype blocks and the role of recombination hot spots. Nat Genet 2003; 33: 382–387.

    CAS  PubMed  Google Scholar 

  72. Wall JD, Pritchard JK . Assessing the performance of the haplotype block model of linkage disequilibrium. Am J Hum Genet 2003; 73: 502–515.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Feuk L, Prince JA, Blennow K, Brookes AJ . Further evidence for role of a promoter variant in the TNFRSF6 gene in Alzheimer disease. Hum Mutat 2003; 21: 53–60.

    CAS  PubMed  Google Scholar 

  74. Haiman CA, Stram DO, Pike MC et al. A comprehensive haplotype analysis of CYP19 and breast cancer risk: the Multiethnic Cohort. Hum Mol Genet 2003; 12: 2679–2692.

    CAS  PubMed  Google Scholar 

  75. Twells RC, Mein CA, Phillips MS et al. Haplotype structure, LD blocks, and uneven recombination within the LRP5 gene. Genome Res 2003; 13: 845–855.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Chakravarti A, Buetow KH, Antonarakis SE, Waber PG, Boehm CD, Kazazian HH . Nonuniform recombination within the human beta-globin gene cluster. Am J Hum Genet 1984; 36: 1239–1258.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Schneider JA, Peto TE, Boone RA, Boyce AJ, Clegg JB . Direct measurement of the male recombination fraction in the human beta-globin hot spot. Hum Mol Genet 2002; 11: 207–215.

    CAS  PubMed  Google Scholar 

  78. Smith RA, Ho PJ, Clegg JB, Kidd JR, Thein SL . Recombination breakpoints in the human beta-globin gene cluster. Blood 1998; 92: 4415–4421.

    CAS  PubMed  Google Scholar 

  79. Li N, Stephens M . Modeling linkage disequilibrium and identifying recombination hot spots using single-nucleotide polymorphism data. Genetics 2003; 165: 2213–2233.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Jeffreys AJ, Kauppi L, Neumann R . Intensely punctate meiotic recombination in the class II region of the major histocompatibility complex. Nat Genet 2001; 29: 217–222.

    CAS  PubMed  Google Scholar 

  81. May CA, Shone AC, Kalaydjieva L, Sajantila A, Jeffreys AJ . Crossover clustering and rapid decay of linkage disequilibrium in the Xp/Yp pseudoautosomal gene SHOX. Nat Genet 2002; 31: 272–275.

    CAS  PubMed  Google Scholar 

  82. Cullen M, Noble J, Erlich H et al. Characterization of recombination in the HLA class II region. Am J Hum Genet 1997; 60: 397–407.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhang K, Deng M, Chen T, Waterman MS, Sun F . A dynamic programming algorithm for haplotype block partitioning. Proc Natl Acad Sci USA 2002; 99: 7335–7339.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Schulze TG, Zhang K, Chen YS, Akula N, Sun F, McMahon FJ . Defining haplotype blocks and tag single-nucleotide polymorphisms in the human genome. Hum Mol Genet 2004; 13: 335–342.

    CAS  PubMed  Google Scholar 

  85. Ardlie K, Liu-Cordero SN, Eberle MA et al. Lower-than-expected linkage disequilibrium between tightly linked markers in humans suggests a role for gene conversion. Am J Hum Genet 2001; 69: 582–589.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Frisse L, Hudson RR, Bartoszewicz A, Wall JD, Donfack J, Di Rienzo A . Gene conversion and different population histories may explain the contrast between polymorphism and linkage disequilibrium levels. Am J Hum Genet 2001; 69: 831–843.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Jeffreys AJ, May CA . Intense and highly localized gene conversion activity in human meiotic crossover hot spots. Nat Genet 2004; 36: 151–156.

    CAS  PubMed  Google Scholar 

  88. Yeager M, Hughes AL . Evolution of the mammalian MHC: natural selection, recombination, and convergent evolution. Immunol Rev 1999; 167: 45–58.

    CAS  PubMed  Google Scholar 

  89. Roos MH, Giles CM, Demant P, Mollenhauer E, Rittner C . Rodgers (Rg) and Chido (Ch) determinants on human C4: characterization of two C4 B5 subtypes, one of which contains Rg and Ch determinants. J Immunol 1984; 133: 2634–2640.

    CAS  PubMed  Google Scholar 

  90. Yu CY, Belt KT, Giles CM, Campbell RD, Porter RR . Structural basis of the polymorphism of human complement components C4A and C4B: gene size, reactivity and antigenicity. EMBO J 1986; 5: 2873–2881.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. White PC, New MI, Dupont B . Structure of human steroid 21-hydroxylase genes. Proc Natl Acad Sci USA 1986; 83: 5111–5115.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Hughes AL . Evolution of introns and exons of class II major histocompatibility complex genes of vertebrates. Immunogenetics 2000; 51: 473–486.

    CAS  PubMed  Google Scholar 

  93. Drickamer K, Dordal MS, Reynolds L . Mannose-binding proteins isolated from rat liver contain carbohydrate-recognition domains linked to collagenous tails. Complete primary structures and homology with pulmonary surfactant apoprotein. J Biol Chem 1986; 261: 6878–6887.

    CAS  PubMed  Google Scholar 

  94. Turner MW, Dinan L, Heatley S et al. Restricted polymorphism of the mannose-binding lectin gene of indigenous Australians. Hum Mol Genet 2000; 9: 1481–1486.

    CAS  PubMed  Google Scholar 

  95. Kang BK, Schlesinger LS . Characterization of mannose receptor-dependent phagocytosis mediated by Mycobacterium tuberculosis lipoarabinomannan. Infect Immun 1998; 66: 2769–2777.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Schlesinger LS . Macrophage phagocytosis of virulent but not attenuated strains of Mycobacterium tuberculosis is mediated by mannose receptors in addition to complement receptors. J Immunol 1993; 150: 2920–2930.

    CAS  PubMed  Google Scholar 

  97. Takahashi K, Gordon J, Liu H et al. Lack of mannose-binding lectin-A enhances survival in a mouse model of acute septic peritonitis. Microbes Infect 2002; 4: 773–784.

    CAS  PubMed  Google Scholar 

  98. Naito H, Ikeda A, Hasegawa K et al. Characterization of human serum mannan-binding protein promoter. J Biochem 1999; 126: 1004–1012.

    CAS  PubMed  Google Scholar 

  99. Bartel DP . MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116: 281–297.

    CAS  PubMed  Google Scholar 

  100. Calin GA, Sevignani C, Dumitru CD et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 2004; 101: 2999–3004.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Conne B, Stutz A, Vassalli JD . The 3′ untranslated region of messenger RNA: a molecular ‘hot spot’ for pathology? Nat Med 2000; 6: 637–641.

    CAS  PubMed  Google Scholar 

  102. Jackson RJ . Cytoplasmic regulation of mRNA function: the importance of the 3′ untranslated region. Cell 1993; 74: 9–14.

    CAS  PubMed  Google Scholar 

  103. Packer BR, Yeager M, Staats B et al. SNP500Cancer: a public resource for sequence validation and assay development for genetic variation in candidate genes. Nucleic Acids Res 2004; 32: D528–D532.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Rieder MJ, Taylor SL, Clark AG, Nickerson DA . Sequence variation in the human angiotensin converting enzyme. Nat Genet 1999; 22: 59–62.

    CAS  PubMed  Google Scholar 

  105. Rozen S, Skaletsky HJ . Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds). Bioinformatics Methods and Protocols: Methods in Molecular Biology. Humana Press: Totowa, 2000, pp 365–386.

    Google Scholar 

  106. Guo N, Mogues T, Weremowicz S, Morton CC, Sastry KN . The human ortholog of rhesus mannose-binding protein-A gene is an expressed pseudogene that localizes to chromosome 10. Mamm Genome 1998; 9: 246–249.

    CAS  PubMed  Google Scholar 

  107. Bray N, Dubchak I, Pachter L . AVID: a global alignment program. Genome Res 2003; 13: 97–102.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Mayor C, Brudno M, Schwartz JR et al. VISTA: visualizing global DNA sequence alignments of arbitrary length. Bioinformatics 2000; 16: 1046–1047.

    CAS  PubMed  Google Scholar 

  109. Dubchak I, Brudno M, Loots GG et al. Active conservation of noncoding sequences revealed by three-way species comparisons. Genome Res 2000; 10: 1304–1306.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Nei M . Molecular Evolutionary Genetics. Columbia University Press: New York, 1987.

    Google Scholar 

  111. Watterson GA . On the number of segregating sites in genetical models without recombination. Theor Popul Biol 1975; 7: 256–276.

    CAS  PubMed  Google Scholar 

  112. Tajima F . Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 1989; 123: 585–595.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Rozas J, Rozas R . DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics 1999; 15: 174–175.

    CAS  PubMed  Google Scholar 

  114. Weir BS . Genetic Data Analysis II: Methods for Discrete Population Genetic Data. Sinauer Associates: Sunderland, 1996.

    Google Scholar 

  115. Schneider S, Roessli D, Excoffier L . Arlequin Ver. 2.000: A Software for Population Genetics Analysis. Genetics and Biometry Laboratory, University of Geneva: Geneva, 2000.

    Google Scholar 

  116. Stephens M, Smith NJ, Donnelly P . A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 2001; 68: 978–989.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Kumar S, Tamura K, Jakobsen IB, Nei M . MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 2001; 17: 1244–1245.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A Hughes, V Kristensen, E Choi, E Tarazona, B Packer, S Savage and HC Erickson for discussion of the data; M Kiley, BJ Stewart, M Brown, A Crenshaw and D Kressley for their excellent technical assistance. TB was partially supported by a research traineeship-training grant of the Community Medicine program of the Ernst-Moritz-Arndt University Greifswald, Germany and the Alfried Krupp von Bohlen und Halbach foundation, Essen, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S J Chanock.

Appendices

Appendix A

Details regarding MBL2 overlapping primers for PCR amplification are shown in Table A1.

Appendix B

Polymorphic sites at the MBL2 locus are listed in Table B1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernig, T., Taylor, J., Foster, C. et al. Sequence analysis of the mannose-binding lectin (MBL2) gene reveals a high degree of heterozygosity with evidence of selection. Genes Immun 5, 461–476 (2004). https://doi.org/10.1038/sj.gene.6364116

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6364116

Keywords

This article is cited by

Search

Quick links