Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Full Paper
  • Published:

RAGE and arthritis: the G82S polymorphism amplifies the inflammatory response

Abstract

The receptor for advanced glycation end products (RAGE) and its proinflammatory S100/calgranulin ligands are enriched in joints of subjects with rheumatoid arthritis (RA) and amplify the immune/inflammatory response. In a model of inflammatory arthritis, blockade of RAGE in mice immunized and challenged with bovine type II collagen suppressed clinical and histologic evidence of arthritis, in parallel with diminished levels of TNF-alpha, IL-6, and matrix metalloproteinases (MMP) 3, 9 and 13 in affected tissues. Allelic variation within key domains of RAGE may influence these proinflammatory mechanisms, thereby predisposing individuals to heightened inflammatory responses. A polymorphism of the RAGE gene within the ligand-binding domain of the receptor has been identified, consisting of a glycine to serine change at position 82. Cells bearing the RAGE 82S allele displayed enhanced binding and cytokine/MMP generation following ligation by a prototypic S100/calgranulin compared with cells expressing the RAGE 82G allele. In human subjects, a case-control study demonstrated an increased prevalence of the 82S allele in patients with RA compared with control subjects. These data suggest that RAGE 82S upregulates the inflammatory response upon engagement of S100/calgranulins, and, thereby, may contribute to enhanced proinflammatory mechanisms in immune/inflammatory diseases.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Hofmann MA, Drury S, Fu C et al. RAGE mediates a novel proinflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides Cell 1999 97: 889–901

    Article  CAS  Google Scholar 

  2. Chilosi M, Mombello A, Montagna L et al. Multimarker immunohistochemical staining of calgranulin, chloroacetate esterase, and S100 for simultaneous demonstration of inflammatory cells on paraffin sections J Histochem Cytochem 1990 38: 1669–1675

    Article  CAS  Google Scholar 

  3. Youssef P, Roth J, Frosch MP et al. Expression of myeloid related proteins (MRP) 8 and 14 and the MRP8/14 heterodimer in rheumatoid arthritis synovial membrane J Rheumatol 1990 26: 2523–2528

    Google Scholar 

  4. Frosch M, Strey A, Vogl T et al. Myeloid-related proteins 8 and 14 are specifically secreted during interaction of phagocytes and activated endothelium and are useful markers for monitoring disease activity in pauciarticular-onset juvenile rheumatoid arthritis Arthritis Rheum 2000 43: 628–637

    Article  CAS  Google Scholar 

  5. Zimmer DB, Cornwall EH, Landar A, Song W . The S100 protein family: history, function, and expression Brain Res Bul 1995 37: 417–429

    Article  CAS  Google Scholar 

  6. Schafer BW, Heinzmann CW . The S100 family of EF-hand calcium-binding proteins: functions and pathology TIBS 1996 21: 134–140

    CAS  PubMed  Google Scholar 

  7. Rammes A, Roth J, Goebeler M, Klempt M, Hartmann M, Sorg C . Myeloid-related protein (MRP) 8 and MRP14, calcium-binding proteins of the S100 family, are secreted by activated monocytes via a novel, tubulin-dependent pathway J Biol Chem 1997 272: 9496–9502

    Article  CAS  Google Scholar 

  8. Hudson BI, Stickland MH, Grant PJ . Identification of polymorphisms in the Receptor for Advanced Glycation End Products (RAGE) gene Diabetes 1998 47: 1155–1157

    Article  CAS  Google Scholar 

  9. Prevost G, Fajardy I, Fontaine P, Danze PM, Besmond C . Human RAGE Gly82Ser dimorphism and HLA class II DRB1-DQA1-DQB1 haplotypes in type 1 diabetes Eur J Immunogenet 1999 26: 343–348

    Article  CAS  Google Scholar 

  10. Neeper M, Schmidt AM, Brett J et al. Cloning and expression of RAGE: a cell surface receptor for advanced glycosylation end products of proteins J Biol Chem 1992 267: 14998–15004

    CAS  Google Scholar 

  11. Schmidt AM, Vianna M, Gerlach M et al. Isolation and characterization of binding proteins for advanced glycosylation endproducts from lung tissue which are present on the endothelial cell surface J Biol Chem 1992 267: 14987–14997

    CAS  Google Scholar 

  12. Kislinger T, Fu C, Huber B et al. Nε carboxymethyl)lysine adducts of proteins are ligands for receptor for advanced glycation endproducts that activate cell signalling pathways and modulate gene expression J Biol Chem 1999 274: 31740–31749

    Article  CAS  Google Scholar 

  13. Yan SD, Chen X, Fu J et al. RAGE and amyloid beta peptide neurotoxicity in Alzheimer’s disease Nature 1996 382: 685–691

    Article  CAS  Google Scholar 

  14. Hori O, Brett J, Slattery T et al. The receptor for advanced glycation endproducts (RAGE) is a cellular binding site for amphoterin: mediation of neurite outgrowth and coexpression of RAGE and amphoterin in the developing nervous system J Biol Chem 1995 270: 25752–25761

    Article  CAS  Google Scholar 

  15. Courtenay JS, Dallman MJ, Dayan AD, Martin A, Mosedale B . Immunization against heterologous type II collagen induces arthritis in mice Nature 1980 283: 666–668

    Article  CAS  Google Scholar 

  16. Trentham DE, Townes AS, Kang AH . Autoimmunity to type II collagen an experimental model of arthritis J Exp Med 1997 146: 857–868

    Article  Google Scholar 

  17. Cathcart ES, Hayes KC, Gonnerman WA, Lazzari AA, Franzblau C . Experimental arthritis in a nonhuman primate. I. Induction by bovine type II collagen Lab Invest 1986 54: 26–31

    CAS  PubMed  Google Scholar 

  18. Park L, Raman KG, Lee KJ et al. Suppression of accelerated diabetic atherosclerosis by soluble receptor for AGE (sRAGE) Nat Med 1998 4: 1025–1031

    Article  CAS  Google Scholar 

  19. Quattrocchi E, Walmsley M, Browne K et al. Paradoxical effects of adenovirus-mediated blockade of TNF activity in murine collagen-induced arthritis J Immunol 1999 163: 1000–1009

    CAS  PubMed  Google Scholar 

  20. Neurath MF, Hildner K, Becker C et al. Methotrexate specifically modulates cytokine production by T cells and macrophages in murine collagen-induced arthritis (CIA): a mechanism for methotrexate-mediated immunosuppression Clin Exp Immunol 1999 115: 42–55

    Article  CAS  Google Scholar 

  21. Pugin J, Widmer MC, Kosodo S, Liang CM, Preas HL II, Suffredini AF . Human neutrophils secrete gelatinase B in vitro and in vivo in response to endotoxin and proinflammatory mediators Am J Respir Cell Mol Biol 1999 20: 458–464

    Article  CAS  Google Scholar 

  22. Lander HL, Tauras JM, Ogiste JS, Moss RA, Schmidt AM . Activation of the Receptor for Advanced Glycation Endproducts triggers a MAP Kinase pathway regulated by oxidant stress J Biol Chem 1997 272: 17810–17814

    Article  CAS  Google Scholar 

  23. Taguchi A, Blood DC, del Toro GA et al. Blockade of amphoterin/RAGE signalling suppresses tumor growth and metastases Nature 2000 405: 354–360

    Article  CAS  Google Scholar 

  24. Pisetsky DS . Tumor necrosis factor blockers in rheumatoid arthritis N Engl J Med 2000 342: 810–811

    Article  CAS  Google Scholar 

  25. Boe A, Baiocchi M, Carbonatto M, Papoian R, Serlupi-Crescenzi O . Interleukin-6 knock-out mice are resistant to antigen-induced experimental arthritis Cytokine 1999 11: 1057–1064

    Article  CAS  Google Scholar 

  26. Robak T, Gladalska A, Stepien H, Robak E . Serum levels of interleukin-6 type cytokines and soluble interleukin-6 receptor in patients with rheumatoid arthritis Mediators Inflamm 1998 7: 347–353

    Article  CAS  Google Scholar 

  27. Keyszer G, Lambiri I, Nagel R et al. Circulating levels of matrix metalloproteinases MMP-3 and MMP-1, tissue inhibitor of metalloproteinases 1 (TIMP-1), and MMP-1/TIMP-1 complex in rheumatic disease. Correlation with clinical activity of rheumatoid arthritis versus other surrogate markers J Rheumatol 1999 26: 251–258

    CAS  PubMed  Google Scholar 

  28. Konttinen YT, Ainola M, Valleala H et al. Analysis of 16 different matrix metalloproteinases (MMP-1 to MMP-20) in the synovial membrane: different profiles in trauma and rheumatoid arthritis Ann Rheum Dis 1999 58: 691–697

    Article  CAS  Google Scholar 

  29. Iwaki-Egawa S, Watanabe Y, Matsuno H . Correlations between matrix metalloproteinase-9 and adenosine deaminase isozymes in synovial fluid from patients with rheumatoid arthritis J Rheumatol 2001 28: 485–489

    CAS  PubMed  Google Scholar 

  30. Kaneko O, Tomita T, Nakase T et al. Expression of proteinases and inflammatory cytokines in subchondral bone regions in the destructive joint of rheumatoid arthritis Rheumatology 2001 40: 247–255

    Article  CAS  Google Scholar 

  31. Meyer JM, Han J, Singh R, Moxley G . Sex influences on the penetrance of HLA shared-epitope genotypes for rheumatoid arthritis Am J Hum Genet 1996 58: 371–383

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Gregersen PK, Silver J, Winchester RJ . The shared epitope hypothesis. An approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis Arthritis Rheum 1987 30: 1205–1213

    Article  CAS  Google Scholar 

  33. Stastny P . Association of the B-cell autoantigen DRW4 with rheumatoid arthritis N Engl J Med 1978 298: 869–871

    Article  CAS  Google Scholar 

  34. Sugaya K, Fukagawa T, Matsumoto K et al. Three genes in the MHC Class III region near the junction with the class II: gene for Receptor of Advanced Glycosylation End Products, PBX2 homeobox gene and a notch homolog, human counterpart of mouse mammary tumor gene int-3 Genomics 1994 23: 408–419

    Article  CAS  Google Scholar 

  35. Donato R . S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles Intl J Biochem Cell Biol 2001 33: 637–668

    Article  CAS  Google Scholar 

  36. Lugering N, Stoll R, Schmid KW et al. The myeloic related protein MRP8/14 (27E10 antigen)-usefulness as a potential marker for disease activity in ulcerative colitis and putative biological function Eur J Clin Invest 1995 25: 659–664

    Article  CAS  Google Scholar 

  37. Schmid KW, Lugering N, Stoll R et al. Immunohistochemical demonstration of calcium-binding proteins MRP8 and MRP 14 and their heterodimer (27E10 antigen) in Crohn’s disease Human Pathol 1995 26: 334–337

    Article  CAS  Google Scholar 

  38. Madsen P . Molecular cloning, occurrence and expression of a novel partially secreted protein ‘psoriasin’ that is highly up-regulated in psoriatic skin J Invest Dermatol 1991 97: 701–712

    Article  CAS  Google Scholar 

  39. Gregersen PK . The North American Rheumatoid Arthritis Consortium – bringing genetic analysis to bear on disease susceptibility, severity and outcome Arthritis Care 1998 11: 1–2

    Article  CAS  Google Scholar 

  40. Cornelis F, Faure S, Martinez M et al. New susceptibility locus for rheumatoid arthritis suggested by a genome-wide linkage study Proc Natl Acad Sci USA 1998 95: 10746–10750

    Article  CAS  Google Scholar 

  41. Weyand CM, Hicok KC, Conn DL, Goronzy JJ . The influence of HLA-DRB1 genes on disease severity in rheumatoid arthritis Ann Int Med 1992 117: 801–806

    Article  CAS  Google Scholar 

  42. Eberhardt K, Fex E, Johnson U, Wollheim FA . Associations of HLA-DRB and -DQB genes with two and five year outcomes in rheumatoid arthritis Ann Rheum Dis 1996 55: 34–39

    Article  CAS  Google Scholar 

  43. Reveille JD, Alarcon GS, Fowler SE et al. HLA-DRB1 genes and disease severity in rheumatoid arthritis Arthritis Rheum 1996 39: 1802–1807

    Article  CAS  Google Scholar 

  44. Criswell LA, Mu H, Such CL, King MC . Inheritance of the shared epitope and long-term outcomes of rheumatoid arthritis among community-based Caucasian females Genet Epidemiol 1998 15: 61–72

    Article  CAS  Google Scholar 

  45. Weyand CM, McCarthy TG, Goronzy JJ . Correlation between disease phenotype and genetic heterogeneity in rheumatoid arthritis J Clin Invest 1995 95: 2120–2126

    Article  CAS  Google Scholar 

  46. Hall FC, Weeks DE, Camillieri JP et al. Influence of the HLA-DRB1 locus on susceptibility and severity in rheumatoid arthritis QJM 1996 89: 821–829

    Article  CAS  Google Scholar 

  47. Mattey DL, Hassell AB, Plant MJ et al. The influence of HLA-DRB1 alleles encoding the DERAA amino acid motif on radiological outcome in rheumatoid arthritis Rheumatology (Oxford) 1999 38: 1221–1227

    Article  CAS  Google Scholar 

  48. Seitz M, Perler M, Pichler W . Only weak association between disease severity and HLA-DRB1 genes in a Swiss population of rheumatoid arthritis patients Rheumatol Int 1996 16: 9–13

    Article  CAS  Google Scholar 

  49. Suarez-Almazor ME, Tao S, Moustarah F, Russell AS, Maksymowych W . HLA-DR1, DR4, and DRB1 disease related subtypes in rheumatoid arthritis. Association with susceptibility but not severity in a city-wide community based study J Rheumatol 1995 22: 2027–2033

    CAS  PubMed  Google Scholar 

  50. Harrison B, Thomson W, Symmons D et al. The influence of HLA-DRB1 alleles and rheumatoid arthritis on disease outcome in an inception cohort of patients with early inflammatory arthritis Arthritis Rheum 1999 42: 2174–2183

    Article  CAS  Google Scholar 

  51. Mulcahy B, Waldron-Lynch F, McDermott MF et al. Genetic variability in the tumor necrosis factor-lymphtoxin region influences susceptibility to rheumatoid arthritis Am J Hum Genet 1996 59: 676–683

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Ota M, Katsuyama Y, Kimura A et al. A second susceptibility gene for developing rheumatoid arthritis in the human MHC is localized within a 70-kb interval telomeric of the TNF genes in the HLA class III region Genomics 2001 71: 263–270

    Article  CAS  Google Scholar 

  53. Complete sequencing and gene map of a human major histocompatibility complex. The MHC sequencing consortium Nature 1999 401: 921–923

  54. Hudson BI, Stickland MH, Futers TS, Grant PJ . Effects of novel polymorphisms in the RAGE gene on transcriptional regulation and their association with diabetic retinopathy Diabetes 2001 50: 1505–1511

    Article  CAS  Google Scholar 

  55. Lalla E, Lamster IB, Feit M et al. Blockade of RAGE suppresses periodontitis-associated alveolar bone loss in diabetic mice J Clin Invest 2000 105: 1117–1124

    Article  CAS  Google Scholar 

  56. Kankova K, Zahejsky J, Marova I et al. Polymorphisms in the RAGE gene influence susceptibility to diabetes-associated microvascular dermatoses in NIDDM J Diabetes Complications 2001 15: 185–192

    Article  CAS  Google Scholar 

  57. Klotz I, Hunston D . Mathematical models for ligand-receptor binding J Biol Chem 1984 259: 10060–10062

    CAS  Google Scholar 

  58. Arnett FC, Edworthy SM, Bloch DA et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis Arthritis Rheum 1988 31: 315–324

    Article  CAS  Google Scholar 

  59. Svejgaard A, Ryder LP . HLA and disease associations: detecting the strongest association Tissue Antigens 1994 43: 18–27

    Article  CAS  Google Scholar 

  60. Tiwari JL, Terasaki PI . The data and statistical analysis In: Tiwari JL, Terasaki PI (eds) HLA and Disease Associations Springer-Verlag: New York 1985 pp 18–22

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A M Schmidt.

Additional information

This work is supported, in part, by the Surgical Research Fund of the College of Physicians & Surgeons, Columbia University, and by grants from the United States Public Health Service to DMS and AMS. Support for PKG and the North American Rheumatoid Arthritis Consortium (NARAC) is provided by the National Arthritis Foundation and by the United States Public Health Service. BIH, MHS and PJG gratefully acknowledge the assistance of Dr Mark S Shearman at Merck, Sharpe and Dohme. BIH is a junior research fellow of the British Heart Foundation (Junior Research Fellowship FS/2000007). MAH and LGB are postdoctoral research fellows of the Juvenile Diabetes Research Foundation. AMS is a recipient of a Burroughs Wellcome Fund Clinical Scientist Award in Translational Research.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hofmann, M., Drury, S., Hudson, B. et al. RAGE and arthritis: the G82S polymorphism amplifies the inflammatory response. Genes Immun 3, 123–135 (2002). https://doi.org/10.1038/sj.gene.6363861

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6363861

Keywords

This article is cited by

Search

Quick links