Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Higher maternal dietary protein intake in late pregnancy is associated with a lower infant ponderal index at birth

Abstract

Aim:

A high ponderal index at birth has been associated with later obesity and it has been suggested that intervention to prevent obesity and its sequela should consider the antenatal period. In this context, we investigated the association between maternal nutrition and birth anthropometry.

Design:

We analyzed data on 1040 mother–infant pairs collected during the Tasmanian Infant Health Survey (TIHS), Tasmania, 1988–1989. Maternal dietary intake during pregnancy was measured by food frequency questionnaire (FFQ) applied soon after birth. Outcomes of interest were birth weight, birth length, head circumference, ponderal index, head circumference –to-ponderal index ratio, placenta-to-birth weight ratio and head circumference-to-birth length index.

Results:

In multiple regression model, an increase of 10 g of absolute protein intake/day was associated with a reduction in birth weight of 17.8 g (95% CI: −32.7, −3.0; P=0.02). Protein intake was also associated negatively with ponderal index (β=−0.01; 95% CI: −0.02, −0.00; P=0.01). A 1 % increase in carbohydrate intake resulted in a 1% decline in placental weight relative to birth weight. Higher protein intake in the third trimester was associated with a reduced ponderal index among large birth weight infants but not low birth weight infants.

Conclusions:

This raises the possibility that any effect of high protein in altering infant anthropometry at birth may involve changes in body composition and future work to examine how a high-protein diet influences body composition at birth is warranted.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  • Baghurst KI, Record SJ (1984). A computerised dietary analysis system for use with diet diaries or food frequency questionnaires. Community Health Stud 8, 11–18.

    Article  CAS  Google Scholar 

  • Barker DJ (1990). The fetal and infant origins of adult disease. BMJ 301, 1111.

    Article  CAS  Google Scholar 

  • Barker DJ (1995). Fetal origins of coronary heart disease. BMJ 311, 171–174.

    Article  CAS  Google Scholar 

  • Barker DJ (1997). Maternal nutrition, fetal nutrition, and disease in later life. Nutrition 13, 807–813.

    Article  CAS  Google Scholar 

  • Barker DJ, Hales CN, Fall CH, Osmond C, Phipps K, Clark PM (1993a). Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): relation to reduced fetal growth. Diabetologia 36, 62–67.

    Article  CAS  Google Scholar 

  • Barker DJ, Osmond C, Simmonds SJ, Wield GA (1993b). The relation of head size and thinness at birth to death from cardiovascular disease in adult life. BMJ 306, 422–426.

    Article  CAS  Google Scholar 

  • Barker DJP (1998). Programming the baby. Churchill Livingstone: Edinburgh.

    Google Scholar 

  • Barker M, Robinson S, Osmond C, Barker DJ (1997). Birth weight and body fat distribution in adolescent girls. Arch Dis Child 77, 381–383.

    Article  CAS  Google Scholar 

  • Bhargava SK, Sachdev HS, Fall CH, Osmond C, Lakshmy R, Barker DJ et al. (2004). Relation of serial changes in childhood body-mass index to impaired glucose tolerance in young adulthood. N Engl J Med 350, 865–875.

    Article  CAS  Google Scholar 

  • Bodnar LM, Nelson MC (2004). Maternal nutrition and fetal growth: bias introduced because of an inappropriate statistical modeling strategy may explain null findings. Am J Clin Nutr 80, 525–526; author reply 526–527.

    Article  CAS  Google Scholar 

  • Boney CM, Verma A, Tucker R, Vohr BR (2005). Metabolic syndrome in childhood: association with birth weight, maternal obesity, and gestational diabetes mellitus. Pediatrics 115, 290–296.

    Article  Google Scholar 

  • Campbell DM, Hall MH, Barker DJ, Cross J, Shiell AW, Godfrey KM (1996). Diet in pregnancy and the offspring's blood pressure 40 years later. Br J Obstet Gynaecol 103, 273–280.

    Article  CAS  Google Scholar 

  • Cook RD, Weisberg S (1982). Residuals and Influence in Regression. Chapman & Hall: New York.

  • Curhan GC, Chertow GM, Willett WC, Spiegelman D, Colditz GA, Manson JE et al. (1996). Birth weight and adult hypertension and obesity in women. Circulation 94, 1310–1315.

    Article  CAS  Google Scholar 

  • d'Espaignet ET, Dwyer T, Newman NM, Ponsonby AL, Candy SG (1990). The development of a model for predicting infants at high risk of sudden infant death syndrome in Tasmania. Paediatr Perinat Epidemiol 4, 422–435.

    Article  CAS  Google Scholar 

  • Dietz WH (1994). Critical periods in childhood for the development of obesity. Am J Clin Nutr 59, 955–959.

    Article  CAS  Google Scholar 

  • Dwyer T, Ponsonby AL, Newman NM, Gibbons LE (1991). Prospective cohort study of prone sleeping position and sudden infant death syndrome. Lancet 337, 1244–1247.

    Article  CAS  Google Scholar 

  • Eriksson J, Forsen T, Osmond C, Barker D (2003a). Obesity from cradle to grave. Int J Obes Relat Metab Disord 27, 722–727.

    Article  CAS  Google Scholar 

  • Eriksson J, Forsen T, Tuomilehto J, Osmond C, Barker D (2001a). Size at birth, childhood growth and obesity in adult life. Int J Obes Relat Metab Disord 25, 735–740.

    Article  CAS  Google Scholar 

  • Eriksson JG, Forsen T, Tuomilehto J, Osmond C, Barker DJ (2001b). Early growth and coronary heart disease in later life: longitudinal study. BMJ 322, 949–953.

    Article  CAS  Google Scholar 

  • Eriksson JG, Forsen T, Tuomilehto J, Osmond C, Barker DJ (2003b). Early adiposity rebound in childhood and risk of Type 2 diabetes in adult life. Diabetologia 46, 190–194.

    Article  CAS  Google Scholar 

  • Fowden AL (1994). Fetal metanolism and energy balance. In: Thorburn GD, Harding R (eds). Textbook of Fetal Physiology. Oxford University Press: Oxford, pp 70–82.

    Google Scholar 

  • Godfrey K, Robinson S, Barker DJ, Osmond C, Cox V (1996). Maternal nutrition in early and late pregnancy in relation to placental and fetal growth. BMJ 312, 410–414.

    Article  CAS  Google Scholar 

  • Godfrey KM, Barker DJ, Robinson S, Osmond C (1997). Maternal birth weight and diet in pregnancy in relation to the infant's thinness at birth. Br J Obstet Gynaecol 104, 663–667.

    Article  CAS  Google Scholar 

  • Godfrey KM, Redman CW, Barker DJ, Osmond C (1991). The effect of maternal anaemia and iron deficiency on the ratio of fetal weight to placental weight. Br J Obstet Gynaecol 98, 886–891.

    Article  CAS  Google Scholar 

  • Greenland S (1989). Modeling and variable selection in epidemiologic analysis. Am J Public Health 79, 340–349.

    Article  CAS  Google Scholar 

  • Gu W, Jones CT, Harding JE (1987). Metabolism of glucose by fetus and placenta of sheep. The effects of normal fluctuations in uterine blood flow. J Dev Physiol 9, 369–389.

    CAS  PubMed  Google Scholar 

  • Gunnarsdottir I, Birgisdottir BE, Thorsdottir I, Gudnason V, Benediktsson R (2002). Size at birth and coronary artery disease in a population with high birth weight. Am J Clin Nutr 76, 1290–1294.

    Article  CAS  Google Scholar 

  • Hagstrom B, Nyberg P, Nilsson PM (1998). Asthma in adult life-is there an association with birth weight? Scand J Prim Health Care 16, 117–120.

    Article  CAS  Google Scholar 

  • Hales CN, Barker DJ, Clark PM, Cox LJ, Fall C, Osmond C et al. (1991). Fetal and infant growth and impaired glucose tolerance at age 64. BMJ 303, 1019–1022.

    Article  CAS  Google Scholar 

  • Hediger ML, Overpeck MD, Kuczmarski RJ, McGlynn A, Maurer KR, Davis WW (1998). Muscularity and fatness of infants and young children born small- or large-for-gestational-age. Pediatrics 102, E60.

    Article  CAS  Google Scholar 

  • Hirvonen T, Mannisto S, Roos E, Pietinen P (1997). Increasing prevalence of underreporting does not necessarily distort dietary surveys. Eur J Clin Nutr 51, 297–301.

    Article  CAS  Google Scholar 

  • Jozwik M, Teng C, Wilkening RB, Meschia G, Battaglia FC (2004). Reciprocal inhibition of umbilical uptake within groups of amino acids. Am J Physiol Endocrinol Metab 286, E376–E383.

    Article  CAS  Google Scholar 

  • Kahn HS, Narayan KM, Williamson DF, Valdez R (2000). Relation of birth weight to lean and fat thigh tissue in young men. Int J Obes Relat Metab Disord 24, 667–672.

    Article  CAS  Google Scholar 

  • Kramer MS, Joseph KS (1996). Enigma of fetal/infant-origin hypothesis. Lancet 348, 1254–1255.

    Article  CAS  Google Scholar 

  • Kramer MS (2004). Commentary: maternal nutrition, body proportions at birth, and adult chronic disease. Int J Epidemiol 33, 837–838.

    Article  Google Scholar 

  • Kramer MSKR (2003). Energy and protein intake. The Cochrane Database of Systematic Reviews, Art No.; CD000032.doi:000010.001002/14651858.CD14000032.

  • Lagiou P, Mucci L, Tamimi R, Kuper H, Lagiou A, Hsieh CC et al. (2005). Micronutrient intake during pregnancy in relation to birth size. Eur J Nutr 44, 52–59.

    Article  CAS  Google Scholar 

  • Law CM, Barker DJ, Osmond C, Fall CH, Simmonds SJ (1992). Early growth and abdominal fatness in adult life. J Epidemiol Community Health 46, 184–186.

    Article  CAS  Google Scholar 

  • Leadbitter P, Pearce N, Cheng S, Sears MR, Holdaway MD, Flannery EM et al. (1999). Relationship between fetal growth and the development of asthma and atopy in childhood. Thorax 54, 905–910.

    Article  CAS  Google Scholar 

  • Leon DA, Lithell HO, Vagero D, Koupilova I, Mohsen R, Berglund L et al. (1998). Reduced fetal growth rate and increased risk of death from ischaemic heart disease: cohort study of 15 000 Swedish men and women born 1915–29. BMJ 317, 241–245.

    Article  CAS  Google Scholar 

  • Lewis J, Milligan G, Hunt A (1995). NUTTAB95. Nutrient data table for use in Australia. Australian Government Publishing Service: Canberra.

    Google Scholar 

  • Malina RM, Katzmarzyk PT, Beunen G (1996). Birth weight and its relationship to size attained and relative fat distribution at 7 to 12 years of age. Obes Res 4, 385–390.

    Article  CAS  Google Scholar 

  • Mardones-Santander F, Rosso P, Stekel A, Ahumada E, Llaguno S, Pizarro F et al. (1988). Effect of a milk-based food supplement on maternal nutritional status and fetal growth in underweight Chilean women. Am J Clin Nutr 47, 413–419.

    Article  CAS  Google Scholar 

  • Martyn CN, Barker DJ, Osmond C (1996). Mothers' pelvic size, fetal growth, and death from stroke and coronary heart disease in men in the UK. Lancet 348, 1264–1268.

    Article  CAS  Google Scholar 

  • Mathews F, Yudkin P, Neil A (1999). Influence of maternal nutrition on outcome of pregnancy: prospective cohort study. BMJ 319, 339–343.

    Article  CAS  Google Scholar 

  • McCance RA, Widdowson EM (1985). Glimpses of comparative fetal growth and development. In: Falkner F and Tanner JM (eds). Human Growth. Plenum Press: New York. pp 133–151.

    Google Scholar 

  • Moore VM, Davies MJ, Willson KJ, Worsley A, Robinson JS (2004). Dietary composition of pregnant women is related to size of the baby at birth. J Nutr 134, 1820–1826.

    Article  CAS  Google Scholar 

  • Oken E, Gillman MW (2003). Fetal origins of obesity. Obes Res 11, 496–506.

    Article  Google Scholar 

  • Osmond C, Barker DJ, Winter PD, Fall CH, Simmonds SJ (1993). Early growth and death from cardiovascular disease in women. BMJ 307, 1519–1524.

    Article  CAS  Google Scholar 

  • Parsons TJ, Power C, Manor O (2001). Fetal and early life growth and body mass index from birth to early adulthood in 1958 British cohort: longitudinal study. BMJ 323, 1331–1335.

    Article  CAS  Google Scholar 

  • Parsons TJ, Power C, Logan S, Summerbell CD (1999). Childhood predictors of adult obesity: a systematic review. Int J Obes Relat Metab Disord 23, S1–S107.

    PubMed  Google Scholar 

  • Pettitt DJ, Baird HR, Aleck KA, Bennett PH, Knowler WC (1983). Excessive obesity in offspring of Pima Indian women with diabetes during pregnancy. N Engl J Med 308, 242–245.

    Article  CAS  Google Scholar 

  • Phillips DI (1995). Relation of fetal growth to adult muscle mass and glucose tolerance. Diabet Med 12, 686–690.

    Article  CAS  Google Scholar 

  • Rasmussen F, Johansson M (1998). The relation of weight, length and ponderal index at birth to body mass index and overweight among 18-year-old males in Sweden. Eur J Epidemiol 14, 373–380.

    Article  CAS  Google Scholar 

  • Ravelli GP, Stein ZA, Susser MW (1976). Obesity in young men after famine exposure in utero and early infancy. N Engl J Med 295, 349–353.

    Article  CAS  Google Scholar 

  • Rich-Edwards JW, Colditz GA, Stampfer MJ, Willett WC, Gillman MW, Hennekens CH et al. (1999). Birth weight and the risk for type 2 diabetes mellitus in adult women. Ann Intern Med 130, 278–284.

    Article  CAS  Google Scholar 

  • Rich-Edwards JW, Kleinman K, Michels KB, Stampfer MJ, Manson JE, Rexrode KM et al. (2005). Longitudinal study of birth weight and adult body mass index in predicting risk of coronary heart disease and stroke in women. BMJ 330, 1115.

    Article  Google Scholar 

  • Rich-Edwards JW, Stampfer MJ, Manson JE, Rosner B, Hankinson SE, Colditz GA et al. (1997). Birth weight and risk of cardiovascular disease in a cohort of women followed up since 1976. BMJ 315, 396–400.

    Article  CAS  Google Scholar 

  • Rogers I (2005). Birth weight and obesity and fat distribution in later life. Birth Defects Res A Clin Mol Teratol 73, 485–486.

    Article  CAS  Google Scholar 

  • Ronzoni S, Marconi AM, Paolini CL, Teng C, Pardi G, Battaglia FC (2002). The effect of a maternal infusion of amino acids on umbilical uptake in pregnancies complicated by intrauterine growth restriction. Am J Obstet Gynecol 187, 741–746.

    Article  CAS  Google Scholar 

  • Rothman KJ, Greenland S (1998). Modern epidemiology 2nd ed Lippincott-Raven: Philadelphia.

    Google Scholar 

  • Royston P, Altman DG (1994). Regression using fractional polynomials of continuous covariates: parsimonious parametric modelling. Appl Stat 43, 429–467.

    Article  Google Scholar 

  • Sachdev HS, Fall CH, Osmond C, Lakshmy R, Dey Biswas SK, Leary SD et al. (2005). Anthropometric indicators of body composition in young adults: relation to size at birth and serial measurements of body mass index in childhood in the New Delhi birth cohort. Am J Clin Nutr 82, 456–466.

    Article  CAS  Google Scholar 

  • Shai I, Rosner BA, Shahar DR, Vardi H, Azrad AB, Kanfi A et al. (2005). Dietary evaluation and attenuation of relative risk: multiple comparisons between blood and urinary biomarkers, food frequency, and 24-hour recall questionnaires: the DEARR study. J Nutr 135, 573–579.

    Article  CAS  Google Scholar 

  • Singhal A, Wells J, Cole TJ, Fewtrell M, Lucas A (2003). Programming of lean body mass: a link between birth weight, obesity, and cardiovascular disease? Am J Clin Nutr 77, 726–730.

    Article  CAS  Google Scholar 

  • Sloan NL, Lederman SA, Leighton J, Himes JH, Rush D (2001). The effect of prenatal dietary protein intake on birth weight. Nutr Res 21, 129–139.

    Article  CAS  Google Scholar 

  • Stanner SA, Bulmer K, Andres C, Lantseva OE, Borodina V, Poteen VV et al. (1997). Does malnutrition in utero determine diabetes and coronary heart disease in adulthood? Results from the Leningrad siege study, a cross sectional study. BMJ 315, 1342–1348.

    Article  CAS  Google Scholar 

  • Susser M, Levin B (1999). Ordeals for the fetal programming hypothesis. The hypothesis largely survives one ordeal but not another. BMJ 318, 885–886.

    Article  CAS  Google Scholar 

  • Wells JC (2000). A Hattori chart analysis of body mass index in infants and children. Int J Obes Relat Metab Disord 24, 325–329.

    Article  CAS  Google Scholar 

  • Willett W (1990). Nutritional Epidemiology. Oxford University Press: New York.

    Google Scholar 

  • Willett WC, Sampson L, Stampfer MJ, Rosner B, Bain C, Witschi J et al. (1985). Reproducibility and validity of a semiquantitative food frequency questionnaire. Am J Epidemiol 122, 51–65.

    Article  CAS  Google Scholar 

  • Williams LA, Evans SF, Newnham JP (1997). Prospective cohort study of factors influencing the relative weights of the placenta and the newborn infant. BMJ 314, 1864–1868.

    Article  CAS  Google Scholar 

  • Yajnik CS (2004). Early life origins of insulin resistance and type 2 diabetes in India and other Asian countries. J Nutr 134, 205–210.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Andreasyan.

Additional information

Guarantor: K Andreasyan.

Contributors: KA undertook analyses and wrote the manuscript with the help of ALP. ALP and TD designed the cohort study and coordinated the collection of data. JC coordinated the cohort data management. All contributors participated in the design, interpretation and writing of the paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andreasyan, K., Ponsonby, AL., Dwyer, T. et al. Higher maternal dietary protein intake in late pregnancy is associated with a lower infant ponderal index at birth. Eur J Clin Nutr 61, 498–508 (2007). https://doi.org/10.1038/sj.ejcn.1602552

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ejcn.1602552

Keywords

This article is cited by

Search

Quick links