Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Vector-based RNA interference against vascular endothelial growth factor-A significantly limits vascularization and growth of prostate cancer in vivo

Abstract

RNA interference technology is emerging as a very potent tool to obtain a cellular knockdown of a desired gene. In this work we used vector-based RNA interference to inhibit vascular endothelial growth factor (VEGF) expression in prostate cancer in vitro and in vivo. We demonstrated that transduction with a plasmid carrying a small interfering RNA targeting all isoforms of VEGF, dramatically impairs the expression of this growth factor in the human prostate cancer cell line PC3. As a consequence, PC3 cells loose their ability to induce one of the fundamental steps of angiogenesis, namely the formation of a tube-like network in vitro. Most importantly, our “therapeutic” vector is able to impair tumor growth rate and vascularization in vivo. We show that a single injection of naked plasmid in developing neoplastic mass significantly decreases microvessel density in an androgen-refractory prostate xenograft and is able to sustain a long-term slowing down of tumor growth. In conclusion, our results confirm the basic role of VEGF in the angiogenic development of prostate carcinoma, and suggest that the use of our vector-based RNA interference approach to inhibit angiogenesis could be an effective tool in view of future gene therapy applications for prostate cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Cookson MM . Prostate cancer: screening and early detection. Cancer Control. 2001;8:133–140.

    Article  CAS  PubMed  Google Scholar 

  2. Levi F, Lucchini F, Negri E, Boyle P, La Vecchia C . Leveling of prostate cancer mortality in Western Europe. Prostate. 2004;60:46–52.

    Article  PubMed  Google Scholar 

  3. Hegarty NJ, Fitzpatrick JM, Richie JP, et al. Future prospects in prostate cancer. Prostate. 1999;40:261–268.

    Article  CAS  PubMed  Google Scholar 

  4. Izawa JI, Dinney CP . The role of angiogenesis in prostate and other urologic cancers: a review. CMAJ. 2001;164:662–670.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Josephs IB, Isaacs JT . Angiogenesis and prostate cancer. In: Chung LWK, Isaacs WB, Simons JW, eds. Prostate Cancer: Biology, Genetics and the New Therapeutics. Totowa, NJ: Humana Press Inc.; 2000: 279–306.

    Chapter  Google Scholar 

  6. Ferrara N, Gerber HP, LeCouter J . The biology of VEGF and its receptors. Nat Med. 2003;9:669–676.

    Article  CAS  PubMed  Google Scholar 

  7. Ferrer FA, Miller LJ, Andrawis RI : et al. Vascular endothelial growth factor (VEGF) expression in human prostate cancer: in situ and in vitro expression of VEGF by human prostate cancer cells. J Urol. 1997;157:2329–2333.

    Article  CAS  PubMed  Google Scholar 

  8. Jackson MW, Bentel JM, Tilley WD . Vascular endothelial growth factor (VEGF) expression in prostate cancer and benign prostatic hyperplasia. J Urol. 1997;157:2323–2328.

    Article  CAS  PubMed  Google Scholar 

  9. Shariat SF, Anwuri VA, Lamb DJ, Shah NV, Wheeler TM, Slawin KM . Association of preoperative plasma levels of vascular endothelial growth factor and soluble vascular cell adhesion molecule-1 with lymph node status and biochemical progression after radical prostatectomy. J Clin Oncol. 2004;22:1655–1663.

    Article  CAS  PubMed  Google Scholar 

  10. Huss WJ, Hanrahan CF, Barrios RJ, Simons JW, Greenberg NM . Angiogenesis and prostate cancer: identification of a molecular progression switch. Cancer Res. 2001;61:2736–2743.

    CAS  PubMed  Google Scholar 

  11. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC . Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391:806–811.

    Article  CAS  PubMed  Google Scholar 

  12. Li K, Lin SY, Brunicardi FC, Seu P . Use of RNA interference to target cyclin E-overexpressing hepatocellular carcinoma. Cancer Res. 2003;63:3593–3597.

    CAS  PubMed  Google Scholar 

  13. Lakka SS, Gondi CS, Yanamandra N, et al. Inhibition of cathepsin B and MMP-9 gene expression in glioblastoma cell line via RNA interference reduces tumor cell invasion, tumor growth and angiogenesis. Oncogene. 2004;23:4681–4689.

    Article  CAS  PubMed  Google Scholar 

  14. Spankuch B, Matthess Y, Knecht R, Zimmer B, Kaufmann M, Strebhardt K . Cancer inhibition in nude mice after systemic application of U6 promoter-driven short hairpin RNAs against PLK1. J Natl Cancer Inst. 2004;96:862–872.

    Article  PubMed  Google Scholar 

  15. Takei Y, Kadomatsu K, Yuzawa Y, Matsuo S, Muramatsu T . A small interfering RNA targeting vascular endothelial growth factor as cancer therapeutics. Cancer Res. 2004;64:3365–3370.

    Article  CAS  PubMed  Google Scholar 

  16. Paul CP, Good PD, Winer I, Engelke DR . Effective expression of small interfering RNA in human cells. Nat Biotechnol. 2002;20:505–508.

    Article  CAS  PubMed  Google Scholar 

  17. Ciafrè SA, Niola F, Wannenes F, e Farace MG . An anti-VEGF ribozyme embedded within the adenoviral VAI sequence inhibits glioblastoma cell angiogenic potential in vitro. J Vasc Res. 2004;41:220–228.

    Article  PubMed  Google Scholar 

  18. Grunstein J, Masbad JJ, Hickey R, Giordano F, Johnson RS . Isoforms of vascular endothelial growth factor act in a coordinate fashion to recruit and expand tumor vasculature. Mol Cell Biol. 2000;20:7282–7291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yu JL, Rak JW, Klement G, Kerbel RS . Vascular endothelial growth factor isoform expression as a determinant of blood vessel patterning in human melanoma xenografts. Cancer Res. 2002;62:1838–1846.

    CAS  PubMed  Google Scholar 

  20. Guo P, Xu L, Pan S, et al. Vascular endothelial growth factor isoforms display distinct activities in promoting tumor angiogenesis at different anatomic sites. Cancer Res. 2001;61:8569–8577.

    CAS  PubMed  Google Scholar 

  21. Carmell MA, Hannon GJ . RNase III enzymes and the initiation of gene silencing. Nat Struct Mol Biol. 2004;11:214–218.

    Article  CAS  PubMed  Google Scholar 

  22. Rubinson DA, Dillon CP, Kwiatkowski AV, et al. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat Genet. 2003;33:401–406.

    Article  CAS  PubMed  Google Scholar 

  23. Gupta S, Schoer RA, Egan JE, Hannon GJ, Mittal V . Inducible, reversible, and stable RNA interference in mammalian cells. Proc Natl Acad Sci USA. 2004;101:1927–1932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ferrara N . Vascular endothelial growth factor: molecular and biological aspects. Curr Top Microbiol Immunol. 1999;237:1–30.

    CAS  PubMed  Google Scholar 

  25. Trojan L, Thomas D, Knoll T, Grobholz R, Alken P, Michel MS . Expression of pro-angiogenic growth factors VEGF, EGF and bFGF and their topographical relation to neovascularisation in prostate cancer. Urol Res. 2003;32:97–103.

    Google Scholar 

  26. Filleur S, Courtin A, Ait-Si-Ali S, et al. SiRNA-mediated inhibition of vascular endothelial growth factor severely limits tumor resistance to antiangiogenic thrombospondin-1 and slows tumor vascularization and growth. Cancer Res. 2003;63:3919–3922.

    CAS  PubMed  Google Scholar 

  27. Shi W, Siemann DW . Simultaneous targeting of VEGF message and VEGF receptor signaling as a therapeutic anticancer approach. Anticancer Res. 2004;24:213–218.

    CAS  PubMed  Google Scholar 

  28. Wu H, Hait WN, Yang JM . Small interfering RNA-induced suppression of MDR1 (P-glycoprotein) restores sensitivity to multidrug-resistant cancer cells. Cancer Res. 2003;63:1515–1519.

    CAS  PubMed  Google Scholar 

  29. Lapteva N, Yang AG, Sanders DE, Strube RW, Chen SY . CXCR4 knockdown by small interfering RNA abrogates breast tumor growth in vivo. Cancer Gene Ther. 2004;12:84–89.

    Article  Google Scholar 

  30. Xu XM, Wang D, Shen Q, Chen YQ, Wang MH . RNA-mediated gene silencing of the RON receptor tyrosine kinase alters oncogenic phenotypes of human colorectal carcinoma cells. Oncogene. 2004;23:8464–8474.

    Article  CAS  PubMed  Google Scholar 

  31. Gondi CS, Lakka SS, Dinh DH, Olivero WC, Gujrati M, Rao JS . RNAi-mediated inhibition of cathepsin B and uPAR leads to decreased cell invasion, angiogenesis and tumor growth in gliomas. Oncogene. 2004;23:8486–8496.

    Article  CAS  PubMed  Google Scholar 

  32. Brummelkamp TR, Bernards R, Agami R . A system for stable expression of short interfering RNAs in mammalian cells. Science. 2002;296:550–553.

    Article  CAS  PubMed  Google Scholar 

  33. Paddison PJ, Caudy AA, Hannon GJ . Stable suppression of gene expression by RNAi in mammalian cells. Proc Natl Acad Sci USA. 2002;99:1443–1448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dev IK, Dornsife RE, Hopper TM, et al. Antitumor efficacy of VEGFR2 tyrosine kinase inhibitor correlates with expression of VEGF and its receptor VEGFR2 in tumor models. Br J Cancer. 2004;91:1391–1398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Szary J, Szala S . Intra-tumoral administration of naked plasmid DNA encoding mouse endostatin inhibits renal carcinoma growth. Int J Cancer. 2001;91:835–839.

    Article  CAS  PubMed  Google Scholar 

  36. Kim SJ, Johnson M, Koterba K, Herynk MH, Uehara H, Gallick GE . Reduced c-Met expression by an adenovirus expressing a c-Met ribozyme inhibits tumorigenic growth and lymph node metastases of PC3-LN4 prostate tumor cells in an orthotopic nude mouse model. Clin Cancer Res. 2003;9:5161–5170.

    CAS  PubMed  Google Scholar 

  37. Park HS, Cheon J, Cho HY, et al. In vivo characterization of a prostate-specific antigen promoter-based suicide gene therapy for the treatment of benign prostatic hyperplasia. Gene Therapy. 2003;10:1129–1134.

    Article  CAS  PubMed  Google Scholar 

  38. Bastide C, Maroc N, Bladou F, et al. Expression of a model gene in prostate cancer cells lentivirally transduced in vitro and in vivo. Prostate Cancer Prostatic Dis. 2003;6:228–234.

    Article  CAS  PubMed  Google Scholar 

  39. Yu D, Jia WW, Gleave ME, Nelson CC, Rennie PS . Prostate-tumor targeting of gene expression by lentiviral vectors containing elements of the probasin promoter. Prostate. 2004;59:370–382.

    Article  CAS  PubMed  Google Scholar 

  40. Mabjeesh NJ, Zhong H, Simons JW . Gene therapy of prostate cancer: current and future directions. Endocr Relat Cancer. 2002;9:115–139.

    Article  CAS  PubMed  Google Scholar 

  41. Hasan J, Byers R, Jayson GC . Intra-tumoral microvessel density in human solid tumors. Br J Cancer. 2002;86:1566–1577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Abdollahi A, Lipson KE, Sckell A, et al. Combined therapy with direct and indirect angiogenesis inhibition results in enhanced antiangiogenic and antitumor effects. Cancer Res. 2003;63:8890–8898.

    CAS  PubMed  Google Scholar 

  43. O'Reilly MS . The combination of antiangiogenic therapy with other modalities. Cancer J. 2002;8:S89–S99.

    PubMed  Google Scholar 

  44. Abdollahi A, Lipson KE, Han X, et al. SU5416 and SU6668 attenuate the angiogenic effects of radiation-induced tumor cell growth factor production and amplify the direct anti-endothelial action of radiation in vitro. Cancer Res. 2003;63:3755–3763.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are particularly grateful to Bina Santoro for her critical review and helpful comments. We thank Paul D Good, Engelke lab., University of Michigan Medical School, Ann Arbor, Michigan, USA, for providing us with pAVU6+27 vector. We thank T Delli Castelli and G Bonelli for excellent technical assistance. This study was funded in part by grants from the Italian Ministry of Instruction, University and Scientific Research (MIUR), FIRB and COFIN, and from the Italian Ministry of Health, to MGF and to SAC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Giulia Farace.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wannenes, F., Ciafré, S., Niola, F. et al. Vector-based RNA interference against vascular endothelial growth factor-A significantly limits vascularization and growth of prostate cancer in vivo. Cancer Gene Ther 12, 926–934 (2005). https://doi.org/10.1038/sj.cgt.7700862

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700862

Keywords

This article is cited by

Search

Quick links