Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The use of advanced technology and statistical methods to predict and prevent suicide

Abstract

In the past decade, two themes have emerged across suicide research. First, according to meta-analyses, the ability to predict and prevent suicidal thoughts and behaviours is weaker than would be expected for the size of the field. Second, review and commentary papers propose that technological and statistical methods (such as smartphones, wearables, digital phenotyping and machine learning) might become solutions to this problem. In this Review, we aim to strike a balance between the pessimistic picture presented by these meta-analyses and the optimistic picture presented by review and commentary papers about the promise of advanced technological and statistical methods to improve the ability to understand, predict and prevent suicide. We divide our discussion into two broad categories. First, we discuss the research aimed at assessment, with the goal of better understanding or more accurately predicting suicidal thoughts and behaviours. Second, we discuss the literature that focuses on prevention of suicidal thoughts and behaviours. Ecological momentary assessment, wearables and other technological and statistical advances hold great promise for predicting and preventing suicide, but there is much yet to do.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of different sampling frequencies.

Similar content being viewed by others

References

  1. Franklin, J. C. et al. The functions of nonsuicidal self-injury: support for cognitive–affective regulation and opponent processes from a novel psychophysiological paradigm. J. Abnorm. Psychol. 119, 850–862 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Belsher, B. E. et al. Prediction models for suicide attempts and deaths: a systematic review and simulation. JAMA Psychiat. 76, 642–651 (2019).

    Article  Google Scholar 

  3. Fox, K. R. et al. Interventions for suicide and self-injury: a meta-analysis of randomized controlled trials across nearly 50 years of research. Psychol. Bull. https://doi.org/10.1037/bul0000305 (2020).

    Article  PubMed  Google Scholar 

  4. Robinson, J. et al. What works in youth suicide prevention? A systematic review and meta-analysis. eClinicalMedicine 4-5, 52–91 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hofstra, E. et al. Effectiveness of suicide prevention interventions: a systematic review and meta-analysis. Gen. Hosp. Psychiat. 63, 127–140 (2020).

    Article  Google Scholar 

  6. Tarrier, N., Taylor, K. & Gooding, P. Cognitive-behavioral interventions to reduce suicide behavior: a systematic review and meta-analysis. Behav. Modif. 32, 77–108 (2008).

    Article  PubMed  Google Scholar 

  7. Torous, J. et al. Smartphones, sensors, and machine learning to advance real-time prediction and interventions for suicide prevention: a review of current progress and next steps. Curr. Psychiat. Rep. 20, 51 (2018).

    Article  Google Scholar 

  8. Sedano-Capdevila, A., Porras-Segovia, A., Bello, H. J., Baca-García, E. & Barrigon, M. L. Use of ecological momentary assessment to study suicidal thoughts and behavior: a systematic review. Curr. Psychiat. Rep. 23, 41 (2021).

    Article  Google Scholar 

  9. Davidson, C. L., Anestis, M. D. & Gutierrez, P. M. Ecological momentary assessment is a neglected methodology in suicidology. Arch. Suicide Res. 21, 1–11 (2017).

    Article  PubMed  Google Scholar 

  10. Ammerman, B. A. & Law, K. C. Using intensive time sampling methods to capture daily suicidal ideation: a systematic review. J. Affect. Disord. 299, 108–117 (2022).

    Article  PubMed  Google Scholar 

  11. Vahabzadeh, A., Sahin, N. & Kalali, A. Digital suicide prevention: can technology become a game-changer? Innov. Clin. Neurosci. 13, 16–20 (2016).

    PubMed  PubMed Central  Google Scholar 

  12. Mou, D., Kleiman, E. M. & Nock, M. K. Proposed directions for suicide research: incorporating successful approaches from other disciplines. Br. J. Psychiat. 217, 659–660 (2020).

    Article  Google Scholar 

  13. Allen, N. B., Nelson, B. W., Brent, D. & Auerbach, R. P. Short-term prediction of suicidal thoughts and behaviors in adolescents: can recent developments in technology and computational science provide a breakthrough? J. Affect. Disord. 250, 163–169 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Roberts, L. W., Chan, S. & Torous, J. New tests, new tools: mobile and connected technologies in advancing psychiatric diagnosis. npj Digital Med. 1, 20176 (2018).

    Article  Google Scholar 

  15. Fazel, S. & O’Reilly, L. Machine learning for suicide research — can it improve risk factor identification? JAMA Psychiat. 77, 13–14 (2020).

    Article  Google Scholar 

  16. Boudreaux, E. D. et al. Applying machine learning approaches to suicide prediction using healthcare data: overview and future directions. Front. Psychiat. 12, 707916 (2021).

    Article  Google Scholar 

  17. Ballard, E. D., Gilbert, J. R., Wusinich, C. & Zarate, C. A. New methods for assessing rapid changes in suicide risk. Front. Psychiat. 12, 31 (2021).

    Article  Google Scholar 

  18. Insel, T. R. Digital phenotyping: technology for a new science of behavior. JAMA 318, 1215–1216 (2017).

    Article  PubMed  Google Scholar 

  19. Insel, T. R. Digital phenotyping: a global tool for psychiatry. World Psychiat. 17, 276–277 (2018).

    Article  Google Scholar 

  20. Kleiman, E. M. & Nock, M. K. Real-time assessment of suicidal thoughts and behaviors. Curr. Opin. Psychol. 22, 33–37 (2018).

    Article  PubMed  Google Scholar 

  21. Gee, B. L., Han, J., Benassi, H. & Batterham, P. J. Suicidal thoughts, suicidal behaviours and self-harm in daily life: a systematic review of ecological momentary assessment studies. Digit. Health 6, 2055207620963958 (2020).

    PubMed  PubMed Central  Google Scholar 

  22. Kleiman, E. M. et al. Examination of real-time fluctuations in suicidal ideation and its risk factors: results from two ecological momentary assessment studies. J. Abnorm. Psychol. 126, 726–738 (2017).

    Article  PubMed  Google Scholar 

  23. Burke, T. A. & Alloy, L. B. Moving toward an ideation-to-action framework in suicide research: a commentary on May and Klonsky (2015). Clin. Psychol. 23, 26–30 (2016).

    Google Scholar 

  24. Klonsky, E. D., Saffer, B. Y. & Bryan, C. J. Ideation-to-action theories of suicide: a conceptual and empirical update. Curr. Opin. Psychol. 22, 38–43 (2018).

    Article  PubMed  Google Scholar 

  25. Klonsky, E. D. & May, A. M. The Three-Step Theory (3ST): a new theory of suicide rooted in the “ideation-to-action” framework. Int. J. Cognit. Ther. 8, 114–129 (2015).

    Article  Google Scholar 

  26. Bryan, C. J. et al. Nonlinear change processes and the emergence of suicidal behavior: a conceptual model based on the fluid vulnerability theory of suicide. New Ideas Psychol. https://doi.org/10.1016/j.newideapsych.2019.100758 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hendin, H., Maltsberger, J. T. & Szanto, K. The role of intense affective states in signaling a suicide crisis. J. Nerv. Ment. Dis. 195, 363–368 (2007).

    Article  PubMed  Google Scholar 

  28. Galynker, I. et al. Prediction of suicidal behavior in high risk psychiatric patients using an assessment of acute suicidal state: the suicide crisis inventory. Depress. Anxiety 34, 147–158 (2017).

    Article  PubMed  Google Scholar 

  29. Miller, A. B. & Prinstein, M. J. Adolescent suicide as a failure of acute stress-response systems. Annu. Rev. Clin. Psychol. 15, 425–450 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Czyz, E. K., King, C. A. & Nahum-Shani, I. Ecological assessment of daily suicidal thoughts and attempts among suicidal teens after psychiatric hospitalization: lessons about feasibility and acceptability. Psychiat. Res. 267, 566–574 (2018).

    Article  Google Scholar 

  31. Glenn, C. R. et al. Feasibility and acceptability of ecological momentary assessment with high-risk suicidal adolescents following acute psychiatric care. J. Clin. Child Adolesc. Psychol. 51, 32–48 (2020).

    Article  PubMed  Google Scholar 

  32. Husky, M. et al. Feasibility and validity of ecological momentary assessment in the investigation of suicide risk. Psychiat. Res. 220, 564–570 (2014).

    Article  Google Scholar 

  33. Porras-Segovia, A. et al. Smartphone-based ecological momentary assessment (EMA) in psychiatric patients and student controls: a real-world feasibility study. J. Affect. Disord. 274, 733–741 (2020).

    Article  PubMed  Google Scholar 

  34. Rogers, M. L. Feasibility and acceptability of ecological momentary assessment in a fully online study of community-based adults at high risk for suicide. Psychol. Assess. https://doi.org/10.1037/pas0001054 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Gratch, I. et al. Detecting suicidal thoughts: the power of ecological momentary assessment. Depress. Anxiety 38, 8–16 (2021).

    Article  PubMed  Google Scholar 

  36. Esposito, E. C. et al. Measuring adolescents’ self-injurious thoughts and behaviors: comparing ecological momentary assessment to a traditional interview. Res. Child. Adolesc. Psychopathol. https://doi.org/10.1007/s10802-022-00907-3 (2022).

    Article  PubMed  Google Scholar 

  37. Law, M. K. et al. Does assessing suicidality frequently and repeatedly cause harm? A randomized control study. Psychol. Assess. 27, 1171–1181 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Coppersmith, D. D. L. et al. Effect of frequent assessment of suicidal thinking on its incidence and severity: high-resolution real-time monitoring study. Br. J. Psychiat. 220, 41–43 (2021).

    Article  Google Scholar 

  39. DeCou, C. R. & Schumann, M. E. On the iatrogenic risk of assessing suicidality: a meta-analysis. Suicide Life Threat. Behav. 48, 531–543 (2018).

    Article  PubMed  Google Scholar 

  40. Hallensleben, N. et al. Predicting suicidal ideation by interpersonal variables, hopelessness and depression in real-time. An ecological momentary assessment study in psychiatric inpatients with depression. Eur. Psychiat. 56, 43–50 (2019).

    Article  Google Scholar 

  41. Beck, A. T. & Steer, R. A. Manual For The Beck Scale For Suicide Ideation (Psychological Corporation, 1991).

  42. Oquendo, M. A. et al. Highly variable suicidal ideation: a phenotypic marker for stress induced suicide risk. Mol. Psychiat. 26, 5079–5086 (2021).

    Article  Google Scholar 

  43. Wang, S. B. et al. A pilot study using frequent inpatient assessments of suicidal thinking to predict short-term postdischarge suicidal behavior. JAMA Netw. Open. 4, e210591 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Palmier-Claus, J. E., Taylor, P. J., Gooding, P., Dunn, G. & Lewis, S. W. Affective variability predicts suicidal ideation in individuals at ultra-high risk of developing psychosis: an experience sampling study. Br. J. Clin. Psychol. 51, 72–83 (2012).

    Article  PubMed  Google Scholar 

  45. Bentley, K. H. et al. Do patterns and types of negative affect during hospitalization predict short-term post-discharge suicidal thoughts and behaviors? Affect. Sci. 2, 484–494 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Peters, E. M. et al. Instability of suicidal ideation in patients hospitalized for depression: an exploratory study using smartphone ecological momentary assessment. Arch. Suicide Res. 26, 56–69 (2022).

    Article  PubMed  Google Scholar 

  47. Herzog, S., Keilp, J. G., Galfalvy, H., Mann, J. J. & Stanley, B. H. Attentional control deficits and suicidal ideation variability: an ecological momentary assessment study in major depression. J. Affect. Disord. 323, 819–825 (2023).

    Article  PubMed  Google Scholar 

  48. Kaurin, A., Dombrovski, A. Y., Hallquist, M. N. & Wright, A. G. C. Momentary interpersonal processes of suicidal surges in borderline personality disorder. Psychol. Med. 52, 2702–2712 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Hadzic, A. et al. The association of trait impulsivity and suicidal ideation and its fluctuation in the context of the interpersonal theory of suicide. Compr. Psychiat. 98, 152158 (2019).

    Article  PubMed  Google Scholar 

  50. Rath, D. et al. Modelling suicide ideation from beep to beep: application of network analysis to ecological momentary assessment data. Internet Interv. 18, 100292 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kuehn, K. S. et al. A meta-analysis on the affect regulation function of real-time self-injurious thoughts and behaviours. Nat. Hum. Behav. 6, 964–974 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Mou, D. et al. Negative affect is more strongly associated with suicidal thinking among suicidal patients with borderline personality disorder than those without. J. Psychiat. Res. 104, 198–201 (2018).

    Article  PubMed  Google Scholar 

  53. Husky, M. et al. Predictors of daily life suicidal ideation in adults recently discharged after a serious suicide attempt: a pilot study. Psychiat. Res. 256, 79–84 (2017).

    Article  Google Scholar 

  54. Forkmann, T. et al. Assessing suicidality in real time: a psychometric evaluation of self-report items for the assessment of suicidal ideation and its proximal risk factors using ecological momentary assessments. J. Abnorm. Psychol. 127, 758–769 (2018).

    Article  PubMed  Google Scholar 

  55. Ben-Zeev, D., Young, M. A. & Depp, C. A. Real-time predictors of suicidal ideation: mobile assessment of hospitalized depressed patients. Psychiat. Res. 197, 55–59 (2012).

    Article  Google Scholar 

  56. Glenn, C. R. et al. Sleep problems predict next-day suicidal thinking among adolescents: a multimodal real-time monitoring study following discharge from acute psychiatric care. Dev. Psychopathol 33, 1701–1721 (2021).

    Article  Google Scholar 

  57. Cobo, A. et al. Patients at high risk of suicide before and during a COVID-19 lockdown: ecological momentary assessment study. BJPsych. Open https://doi.org/10.1192/bjo.2021.43 (2021).

    Article  PubMed  Google Scholar 

  58. Brüdern, J. et al. Sleep disturbances predict active suicidal ideation the next day: an ecological momentary assessment study. BMC Psychiat. 22, 65 (2022).

    Article  Google Scholar 

  59. Littlewood, D. L. et al. Short sleep duration and poor sleep quality predict next-day suicidal ideation: an ecological momentary assessment study. Psychol. Med. 49, 403–411 (2019).

    Article  PubMed  Google Scholar 

  60. Coppersmith, D. D. L., Kleiman, E. M., Glenn, C. R., Millner, A. J. & Nock, M. K. The dynamics of social support among suicide attempters: a smartphone-based daily diary study. Behav. Res. Ther. 120, 103348 (2019).

    Article  PubMed  Google Scholar 

  61. Al-Dajani, N., Horwitz, A. G. & Czyz, E. K. Does coping reduce suicidal urges in everyday life? Evidence from a daily diary study of adolescent inpatients. Depress. Anxiety https://doi.org/10.1002/da.23253 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Franz, P. J., Kleiman, E. M. & Nock, M. K. Reappraisal and suppression each moderate the association between stress and suicidal ideation: preliminary evidence from a daily diary study. Cogn. Ther. Res. 45, 1120–1127 (2021).

    Article  Google Scholar 

  63. Chu, C. et al. The interpersonal theory of suicide: a systematic review and meta-analysis of a decade of cross-national research. Psychol. Bull. 143, 1313–1345 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Van Orden, K. A. et al. The interpersonal theory of suicide. Psychol. Rev. 117, 575–600 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Bernert, R. A. & Joiner, T. E. Sleep disturbances and suicide risk: a review of the literature. Neuropsychiat. Dis. Treat. 3, 735–743 (2007).

    Article  Google Scholar 

  66. Kearns, J. C. et al. Sleep problems and suicide risk in youth: a systematic review, developmental framework, and implications for hospital treatment. Gen. Hosp. Psychiat. https://doi.org/10.1016/j.genhosppsych.2018.09.011 (2018).

    Article  Google Scholar 

  67. Liu, R. T. et al. Sleep and suicide: a systematic review and meta-analysis of longitudinal studies. Clin. Psychol. Rev. 81, 101895 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Bernert, R. A., Hom, M. A., Iwata, N. G. & Joiner, T. E. Objectively assessed sleep variability as an acute warning sign of suicidal ideation in a longitudinal evaluation of young adults at high suicide risk. J. Clin. Psychiat. 78, e678–e687 (2017).

    Article  Google Scholar 

  69. Tanskanen, A. et al. Nightmares as predictors of suicide. Sleep 24, 845–848 (2001).

    Google Scholar 

  70. Rogers, M. L., Ringer, F. B. & Joiner, T. E. A meta-analytic review of the association between agitation and suicide attempts. Clin. Psychol. Rev. 48, 1–6 (2016).

    Article  PubMed  Google Scholar 

  71. Turton, H., Berry, K., Danquah, A. & Pratt, D. The relationship between emotion dysregulation and suicide ideation and behaviour: a systematic review. J. Affect. Disord. Rep. 5, 100136 (2021).

    Article  Google Scholar 

  72. Kleiman, E. M. et al. Can passive measurement of physiological distress help better predict suicidal thinking? Transl. Psychiat. 11, 611 (2021).

    Article  Google Scholar 

  73. Appelhans, B. M. & Luecken, L. J. Heart rate variability as an index of regulated emotional responding. Rev. Gen. Psychol. 10, 229–240 (2006).

    Article  Google Scholar 

  74. Sheridan, D. C. et al. Heart rate variability and its ability to detect worsening suicidality in adolescents: a pilot trial of wearable technology. Psychiat. Invest. https://doi.org/10.30773/pi.2021.0057 (2021).

    Article  Google Scholar 

  75. Oakey-Frost, N., Moscardini, E. H., Cowan, T., Cohen, A. & Tucker, R. P. The temporal dynamics of wish to live, wish to die, and their short-term prospective relationships with suicidal desire. Behav. Ther. https://doi.org/10.1016/j.beth.2022.12.011 (2023).

    Article  PubMed  Google Scholar 

  76. Mobile phone ownership over time. Pew Research Center https://www.pewresearch.org/internet/fact-sheet/mobile/ (2021).

  77. Global smartphone penetration 2016–2020. Statista http://www.statista.com/statistics/203734/global-smartphone-penetration-per-capita-since-2005/ (2022).

  78. Hoffmann, J. A., Farrell, C. A., Monuteaux, M. C., Fleegler, E. W. & Lee, L. K. Association of pediatric suicide with county-level poverty in the United States, 2007–2016. JAMA Pediatr. 174, 287–294 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Iemmi, V. et al. Suicide and poverty in low-income and middle-income countries: a systematic review. Lancet Psychiat. 3, 774–783 (2016).

    Article  Google Scholar 

  80. Choi, J. W., Kim, T. H., Shin, J. & Han, E. Poverty and suicide risk in older adults: a retrospective longitudinal cohort study. Int. J. Geriatr. Psychiat. 34, 1565–1571 (2019).

    Article  Google Scholar 

  81. Intille, S., Haynes, C., Maniar, D., Ponnada, A. & Manjourides, J. μEMA: microinteraction-based ecological momentary assessment (EMA) using a smartwatch. Proc. ACM Int. Conf. Ubiquitous Comput. 2016, 1124–1128 (2016).

    PubMed  PubMed Central  Google Scholar 

  82. van Dooren, M., Gert-Jan de Vries, J. J. G. & Janssen, J. H. Emotional sweating across the body: comparing 16 different skin conductance measurement locations. Physiol. Behav. 106, 298–304 (2012).

    Article  PubMed  Google Scholar 

  83. Shcherbina, A. et al. Accuracy in wrist-worn, sensor-based measurements of heart rate and energy expenditure in a diverse cohort. J. Pers. Med. 7, 3 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Colvonen, P. J. Response To: Investigating sources of inaccuracy in wearable optical heart rate sensors. npj Digit. Med. 4, 1–2 (2021).

    Article  Google Scholar 

  85. Bent, B., Goldstein, B. A., Kibbe, W. A. & Dunn, J. P. Investigating sources of inaccuracy in wearable optical heart rate sensors. npj Digit. Med. 3, 18 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Sjoding, M. W., Dickson, R. P., Iwashyna, T. J., Gay, S. E. & Valley, T. S. Racial bias in pulse oximetry measurement. N. Engl. J. Med. 383, 2477–2478 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Jena, B., Kanfer, J. & Bowditchr, L. What medicine gets wrong about race. Freakonomics https://freakonomics.com/podcast/what-medicine-gets-wrong-about-race/ (2022).

  88. Bernanke, J. A., Stanley, B. H. & Oquendo, M. A. Toward fine-grained phenotyping of suicidal behavior: the role of suicidal subtypes. Mol. Psychiat. 22, 1080–1081 (2017).

    Article  Google Scholar 

  89. Arensman, E. & Kerkhof, A. J. F. M. Classification of attempted suicide: a review of empirical studies, 1963–1993. Suicide Life Threat. Behav. 26, 46–67 (1996).

    PubMed  Google Scholar 

  90. Onnela, J. P. & Rauch, S. L. Harnessing smartphone-based digital phenotyping to enhance behavioral and mental health. Neuropsychopharmacology 41, 1691–1696 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Bryan, C. J., Rozek, D. C., Butner, J. & Rudd, M. D. Patterns of change in suicide ideation signal the recurrence of suicide attempts among high-risk psychiatric outpatients. Behav. Res. Ther. 120, 103392 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Bryan, C. J. & Rudd, M. D. The importance of temporal dynamics in the transition from suicidal thought to behavior. Clin. Psychol. Sci. Pract. 23, 21–25 (2016).

    Article  Google Scholar 

  93. Czyz, E. K. & King, C. A. Longitudinal trajectories of suicidal ideation and subsequent suicide attempts among adolescent inpatients. J. Clin. Child. Adolesc. Psychol. 44, 181–193 (2015).

    Article  PubMed  Google Scholar 

  94. Kleiman, E. M. et al. Digital phenotyping of suicidal thoughts. Depress. Anxiety 35, 601–608 (2018).

    Article  PubMed  Google Scholar 

  95. Hart, S. R. et al. Subtypes of suicide attempters based on longitudinal childhood profiles of co-occurring depressive, anxious and aggressive behavior symptoms. Psychiat. Res. 257, 150–155 (2017).

    Article  Google Scholar 

  96. Zuromski, K. L., Cero, I. & Witte, T. K. Non-monotonic temporal variation in fearlessness about death: a latent class growth analysis. Psychiat. Res. 268, 46–52 (2018).

    Article  Google Scholar 

  97. Schuler, K. R., Smith, P. N., Rufino, K. A., Stuart, G. L. & Wolford-Clevenger, C. Examining the temporal stability of suicide capability among undergraduates: a latent growth analysis. J. Affect. Disord. 282, 587–593 (2021).

    Article  PubMed  Google Scholar 

  98. Spangenberg, L., Glaesmer, H., Hallensleben, N., Rath, D. & Forkmann, T. (In)stability of capability for suicide in psychiatric inpatients: longitudinal assessment using ecological momentary assessments. Suicide Life Threat. Behav. 49, 1560–1572 (2019).

    Article  PubMed  Google Scholar 

  99. Sels, L. et al. SIMON: a digital protocol to monitor and predict suicidal ideation. Front. Psychiat. 12, 554811 (2021).

    Article  Google Scholar 

  100. Brown, L. A. et al. Digital phenotyping to improve prediction of suicidal urges in treatment: study protocol. Aggress. Violent Behav. 8, 101733 (2022).

    Article  Google Scholar 

  101. Stanley, B., Itzhaky, L. & Oquendo, M. A. Identifying neurobiological underpinnings of two suicidal subtypes. J. Psychiat. Brain Sci. 6, e210016 (2021).

    Google Scholar 

  102. Brietzke, E. et al. Integrating digital phenotyping in clinical characterization of individuals with mood disorders. Neurosci. Biobehav. Rev. 104, 223–230 (2019).

    Article  PubMed  Google Scholar 

  103. Barrigon, M. L., Courtet, P., Oquendo, M. & Baca-García, E. Precision medicine and suicide: an opportunity for digital health. Curr. Psychiat. Rep. 21, 131 (2019).

    Article  Google Scholar 

  104. Barredo, J. et al. Translating interventional neuroscience to suicide: it’s about time. Biol. Psychiat. 89, 1073–1083 (2021).

    Article  PubMed  Google Scholar 

  105. Carretero, P., Campana-Montes, J. J. & Artes-Rodriguez, A. Ecological momentary assessment for monitoring risk of suicide behavior. Curr. Top. Behav. Neurosci. 46, 229–245 (2020).

    Article  PubMed  Google Scholar 

  106. Van Assche, E. et al. Digital tools for the assessment of pharmacological treatment for depressive disorder: state of the art. Eur. Neuropsychopharmacol. 60, 100–116 (2022).

    Article  PubMed  Google Scholar 

  107. Haines-Delmont, A. et al. Testing suicide risk prediction algorithms using phone measurements with patients in acute mental health settings: feasibility study. JMIR mHealth uHealth 8, e15901 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Galatzer-Levy, I. et al. Validation of visual and auditory digital markers of suicidality in acutely suicidal psychiatric inpatients: proof-of-concept study. J. Med. Internet Res. 23, e25199 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Diniz, E. J. S. et al. Boamente: a natural language processing-based digital phenotyping tool for smart monitoring of suicidal ideation. Healthcare 10, 698 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Betthauser, L. M. et al. Mobile app for mental health monitoring and clinical outreach in veterans: mixed methods feasibility and acceptability study. J. Med. Internet Res. 22, e15506 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Barak-Corren, Y. et al. Predicting suicidal behavior from longitudinal electronic health records. Am. J. Psychiat. 174, 154–162 (2017).

    Article  PubMed  Google Scholar 

  112. Barak-Corren, Y. et al. Validation of an electronic health record–based suicide risk prediction modeling approach across multiple health care systems. JAMA Netw. Open 3, e201262 (2020).

    Article  PubMed  Google Scholar 

  113. Walsh, C. G., Ribeiro, J. D. & Franklin, J. C. Predicting suicide attempts in adolescents with longitudinal clinical data and machine learning. J. Child. Psychol. Psychiat. 59, 1261–1270 (2018).

    Article  PubMed  Google Scholar 

  114. Walsh, C. G., Ribeiro, J. D. & Franklin, J. C. Predicting risk of suicide attempts over time through machine learning. Clin. Psychol. Sci. 5, 457–469 (2017).

    Article  Google Scholar 

  115. Su, C. et al. Machine learning for suicide risk prediction in children and adolescents with electronic health records. Transl. Psychiat. 10, 1–10 (2020).

    Article  Google Scholar 

  116. Kusuma, K. et al. The performance of machine learning models in predicting suicidal ideation, attempts, and deaths: a meta-analysis and systematic review. J. Psychiat. Res. 155, 579–588 (2022).

    Article  PubMed  Google Scholar 

  117. Bentley, K. H. et al. Implementing machine learning models for suicide risk prediction in clinical practice: focus group study with hospital providers. JMIR Formative Res. 6, e30946 (2022).

    Article  Google Scholar 

  118. Nock, M. K. et al. Prediction of suicide attempts using clinician assessment, patient self-report, and electronic health records. JAMA Netw. Open. 5, e2144373 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Glenn, C. R. et al. Understanding suicide risk within the research domain criteria (RDoC) framework: a meta-analytic review. Depress. Anxiety 35, 65–88 (2018).

    Article  PubMed  Google Scholar 

  120. Glenn, C. R., Cha, C. B., Kleiman, E. M. & Nock, M. K. Understanding suicide risk within the research domain criteria (RDoC) framework: insights, challenges, and future research considerations. Clin. Psychol. Sci. 5, 568–592 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  121. King, C. A. et al. Prospective development and validation of the computerized adaptive screen for suicidal youth. JAMA Psychiat. 78, 540–549 (2021).

    Article  Google Scholar 

  122. Jacobucci, R., Littlefield, A. K., Millner, A. J., Kleiman, E. M. & Steinley, D. Evidence of inflated prediction performance: a commentary on machine learning and suicide research. Clin. Psychol. Sci. 9, 129–134 (2021).

    Article  Google Scholar 

  123. Cox, C. R., Moscardini, E. H., Cohen, A. S. & Tucker, R. P. Machine learning for suicidology: a practical review of exploratory and hypothesis-driven approaches. Clin. Psychol. Rev. 82, 101940 (2020).

    Article  PubMed  Google Scholar 

  124. Coley, R. Y., Johnson, E., Simon, G. E., Cruz, M. & Shortreed, S. M. Racial/ethnic disparities in the performance of prediction models for death by suicide after mental health visits. JAMA Psychiat. 78, 726 (2021).

    Article  Google Scholar 

  125. Gianfrancesco, M. A., Tamang, S., Yazdany, J. & Schmajuk, G. Potential biases in machine learning algorithms using electronic health record data. JAMA Intern. Med. 178, 1544–1547 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Klonsky, E. D. The role of theory for understanding and preventing suicide (but not predicting it): a commentary on Hjelmeland and Knizek. Death Stud. 44, 459–462 (2020).

    Article  PubMed  Google Scholar 

  127. Millner, A. J., Robinaugh, D. J. & Nock, M. K. Advancing the understanding of suicide: the need for formal theory and rigorous descriptive research. Trends Cogn. Sci. 24, 704–716 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Heron, K. E. & Smyth, J. M. Ecological momentary interventions: Incorporating mobile technology into psychosocial and health behaviour treatments. Br. J. Health Psychol. 15, 1–39 (2010).

    Article  PubMed  Google Scholar 

  129. Balaskas, A., Schueller, S. M., Cox, A. L. & Doherty, G. Ecological momentary interventions for mental health: a scoping review. PLoS One 16, e0248152 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Bernstein, E. E. et al. An ecological momentary intervention study of emotional responses to smartphone-prompted CBT skills practice and the relationship to clinical outcomes. Behav. Ther. https://doi.org/10.1016/j.beth.2021.09.001 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Luxton, D. D., June, J. D. & Chalker, S. A. Mobile health technologies for suicide prevention: feature review and recommendations for use in clinical care. Curr. Treat. Options Psych. 2, 349–362 (2015).

    Article  Google Scholar 

  132. Wyman, P. A. Developmental approach to prevent adolescent suicides: research pathways to effective upstream preventive interventions. Am. J. Prev. Med. 47, S251–S256 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Wilcox, H. C. & Wyman, P. A. Suicide prevention strategies for improving population health. Child. Adolesc. Psychiatr. Clin. North Am. 25, 219–233 (2016).

    Article  Google Scholar 

  134. Kleiman, E. M., Bentley, K. H., Glenn, C. R., Liu, R. T. & Rizvi, S. L. Building on the past 50 years, not starting over: a balanced interpretation of meta-analyses, reviews, and commentaries on treatments for suicide and self-injury. Gen. Hosp. Psychiat. 74, 18–21 (2022).

    Article  Google Scholar 

  135. Larsen, M. E., Nicholas, J. & Christensen, H. A systematic assessment of smartphone tools for suicide prevention. PLoS One 11, e0152285 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Melia, R. et al. Mobile health technology interventions for suicide prevention: systematic review. JMIR mHealth uHealth 8, e12516 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Stanley, B. & Brown, G. K. Safety planning intervention: a brief intervention to mitigate suicide risk. Cogn. Behav. Pract. 19, 256–264 (2012).

    Article  Google Scholar 

  138. Melvin, G. A. et al. Evaluating the feasibility and effectiveness of an Australian safety planning smartphone application: a pilot study within a tertiary mental health service. Suicide Life Threat. Behav. 49, 846–858 (2019).

    Article  PubMed  Google Scholar 

  139. Bush, N. E. et al. A virtual hope box: randomized controlled trial of a smartphone app for emotional regulation and coping with distress. Psychiat. Serv. 68, 330–336 (2017).

    Article  Google Scholar 

  140. Bush, N. E. et al. A virtual hope box smartphone app as an accessory to therapy: proof-of-concept in a clinical sample of veterans. Suicide Life Threat. Behav. 45, 1–9 (2015).

    Article  PubMed  Google Scholar 

  141. Roberts, L. W., Berk, M. S. & Lane-McKinley, K. Ethical considerations in research on suicide prediction: necessity as the mother of invention. JAMA Psychiat. 76, 883–884 (2019).

    Article  Google Scholar 

  142. Nahum-Shani, I. et al. Just-in-time adaptive interventions (JITAIs) in mobile health: key components and design principles for ongoing health behavior support. Ann. Behav. Med. 52, 446–462 (2018).

    Article  PubMed  Google Scholar 

  143. Teepe, G. W. et al. Just-in-time adaptive mechanisms of popular mobile apps for individuals with depression: systematic app search and literature review. J. Med. Internet Res. 23, e29412 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Coppersmith, D. D. L. et al. Just-in-time adaptive interventions for suicide prevention: promise, challenges, and future directions. Psychiatry 85, 317–333 (2022).

    Article  PubMed  Google Scholar 

  145. Hardeman, W., Houghton, J., Lane, K., Jones, A. & Naughton, F. A systematic review of just-in-time adaptive interventions (JITAIs) to promote physical activity. Int. J. Behav. Nutr. Phys. Act. 16, 31 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Allport, G. W. The general and the unique in psychological science. J. Pers. 30, 405–422 (1962).

    Article  PubMed  Google Scholar 

  147. Leenars, A. A. In defense of the idiographic approach: studies of suicide notes and personal documents. Arch. Suicide Res. 6, 19–30 (2002).

    Article  Google Scholar 

  148. Rizvi, S. L. & Nock, M. K. Single-case experimental designs for the evaluation of treatments for self-injurious and suicidal behaviors. Suicide Life Threat. Behav. 38, 498–510 (2008).

    Article  PubMed  Google Scholar 

  149. Scholten, S., Lischetzke, T. & Glombiewski, J. A. Integrating theory-based and data-driven methods to case conceptualization: a functional analysis approach with ecological momentary assessment. Psychotherapy Res. 32, 65–77 (2021).

    Google Scholar 

  150. Wright, A. G. C. & Woods, W. C. Personalized models of psychopathology. Annu. Rev. Clin. Psychol. 16, 49–74 (2020).

    Article  PubMed  Google Scholar 

  151. Kaurin, A., Dombrovski, A. Y., Hallquist, M. N. & Wright, A. G. C. Integrating a functional view on suicide risk into idiographic statistical models. Behav. Res. Ther. 150, 104012 (2022).

    Article  PubMed  Google Scholar 

  152. Horvath, A. O. & Symonds, B. D. Relation between working alliance and outcome in psychotherapy: a meta-analysis. J. Counsel. Psychol. 38, 139–149 (1991).

    Article  Google Scholar 

  153. Martin, D. J., Garske, J. P. & Davis, M. K. Relation of the therapeutic alliance with outcome and other variables: a meta-analytic review. J. Consult. Clin. Psychol. 68, 438–450 (2000).

    Article  PubMed  Google Scholar 

  154. Ramseyer, F. & Tschacher, W. Nonverbal synchrony in psychotherapy: coordinated body movement reflects relationship quality and outcome. J. Consult. Clin. Psychol. 79, 284–295 (2011).

    Article  PubMed  Google Scholar 

  155. Abramson, L. Y. et al. Suicidality and cognitive vulnerability to depression among college students: a prospective study. J. Adolesc. 21, 473–487 (1998).

    Article  PubMed  Google Scholar 

  156. Rogers, M. L., Chu, C. & Joiner, T. The necessity, validity, and clinical utility of a new diagnostic entity: acute suicidal affective disturbance. J. Clin. Psychol. 75, 999–1010 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Rudd, D. M. Fluid vulnerability theory: a cognitive approach to understanding the process of acute and chronic suicide risk. In Cognition And Suicide: Theory, Research, And Therapy (ed. Ellis, T. E.) 355–368 (American Psychological Association, 2006).

  158. Rizk, M. M. et al. Variability in suicidal ideation is associated with affective instability in suicide attempters with borderline personality disorder. Psychiatry 82, 173–178 (2019).

    Article  PubMed  Google Scholar 

  159. Ballegooijen, W., van, Littlewood, D. L., Nielsen, E., Kapur, N. & Gooding, P. The temporal relationships between defeat, entrapment and suicidal ideation: ecological momentary assessment study. BJPsych Open 8, e105 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Huckvale, K., Venkatesh, S. & Christensen, H. Toward clinical digital phenotyping: a timely opportunity to consider purpose, quality, and safety. npj Digit. Med. 2, 1–11 (2019).

    Article  Google Scholar 

  161. Frumkin, M. R., Piccirillo, M. L., Beck, E. D., Grossman, J. T. & Rodebaugh, T. L. Feasibility and utility of idiographic models in the clinic: a pilot study. Psychother. Res. 31, 520–534 (2021).

    Article  PubMed  Google Scholar 

  162. Brown, L. A., Benhamou, K., May, A. M., Mu, W. & Berk, R. Machine learning algorithms in suicide prevention: clinician interpretations as barriers to implementation. J. Clin. Psychiat. 81, 19m12970 (2020).

    Article  Google Scholar 

  163. Fried, E. I. Lack of theory building and testing impedes progress in the factor and network literature. Psychol. Inq. 31, 271–288 (2020).

    Article  Google Scholar 

  164. Bentley, K. H., Kleiman, E. M., Elliott, G., Huffman, J. C. & Nock, M. K. Real-time monitoring technology in single-case experimental design research: opportunities and challenges. Behav. Res. Ther. 117, 87–96 (2019).

    Article  PubMed  Google Scholar 

  165. Dixon, S. Most popular social networks of teenagers in the United States from fall 2012 to fall 2021. Statista https://www.statista.com/statistics/250172/social-network-usage-of-us-teens-and-young-adults/ (2021).

  166. Amagasa, S. et al. How well iPhones measure steps in free-living conditions: cross-sectional validation study. JMIR mHealth uHealth 7, e10418 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Maher, N. A. et al. Passive data collection and use in healthcare: a systematic review of ethical issues. Int. J. Med. Inform. 129, 242–247 (2019).

    Article  PubMed  Google Scholar 

  168. Martin, J. L. & Hakim, A. D. Wrist actigraphy. Chest 139, 1514–1527 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Alqaraawi, A., Alwosheel, A. & Alasaad, A. Heart rate variability estimation in photoplethysmography signals using Bayesian learning approach. Healthc. Technol. Lett. 3, 136–142 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Sano, A. & Picard, R. W. Stress recognition using wearable sensors and mobile phones. 2013 Humaine Assoc. Conf. Affect. Comput. Intell. Interaction https://doi.org/10.1109/ACII.2013.117 (2013).

    Article  Google Scholar 

  171. Bentley, K. H. et al. Practices for monitoring and responding to incoming data on self-injurious thoughts and behaviors in intensive longitudinal studies: a systematic review. Clin. Psychol. Rev. 90, 102098 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  172. de Beurs, D. et al. A network perspective on suicidal behavior: understanding suicidality as a complex system. Suicide Life Threat. Behav. 51, 115–126 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Fernandes, A. C. et al. Identifying suicide ideation and suicidal attempts in a psychiatric clinical research database using natural language processing. Sci. Rep. 8, 7426 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Tsui, F. R. et al. Natural language processing and machine learning of electronic health records for prediction of first-time suicide attempts. JAMIA Open. 4, ooab011 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Rahman, N. et al. Using natural language processing to improve suicide classification requires consideration of race. Suicide Life Threat. Behav. https://doi.org/10.1111/sltb.12862 (2022).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This publication was supported by the National Institute of Mental Health of the National Institutes of Health under Award Number R01MH124899 to E.M.K., C.R.G. and R.T.L. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

E.M.K. wrote the initial draft of the article. C.R.G. and R.T.L. provided substantive contributions to the revisions of all drafts. All authors discussed the content and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Evan M. Kleiman.

Ethics declarations

Competing interests

R.T.L. currently serves as a consultant to Relmada Therapeutics. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Psychology thanks Regina Miranda, Jeremy Stewart, and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kleiman, E.M., Glenn, C.R. & Liu, R.T. The use of advanced technology and statistical methods to predict and prevent suicide. Nat Rev Psychol 2, 347–359 (2023). https://doi.org/10.1038/s44159-023-00175-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44159-023-00175-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing