Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sex-specific genetic regulation of adipose mitochondria and metabolic syndrome by Ndufv2

Abstract

We have previously suggested a central role for mitochondria in the observed sex differences in metabolic traits. However, the mechanisms by which sex differences affect adipose mitochondrial function and metabolic syndrome are unclear. Here we show that in both mice and humans, adipose mitochondrial functions are elevated in females and are strongly associated with adiposity, insulin resistance and plasma lipids. Using a panel of diverse inbred strains of mice, we identify a genetic locus on mouse chromosome 17 that controls mitochondrial mass and function in adipose tissue in a sex- and tissue-specific manner. This locus contains Ndufv2 and regulates the expression of at least 89 mitochondrial genes in females, including oxidative phosphorylation genes and those related to mitochondrial DNA content. Overexpression studies indicate that Ndufv2 mediates these effects by regulating supercomplex assembly and elevating mitochondrial reactive oxygen species production, which generates a signal that increases mitochondrial biogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sex and tissue-specific expression profiles of OXPHOS genes in both mice and humans.
Fig. 2: Adipose mitochondria levels strongly predict metabolic traits in both mice and humans.
Fig. 3: Sex-specific genetic architecture of adipose mitochondrial gene expression.
Fig. 4: Chr17 trans-eQTL controls metabolic syndrome traits in HMDP.
Fig. 5: Adipose Ndufv2 is the causal regulator of chr17 trans-eQTL locus.
Fig. 6: Adipose Ndufv2 overexpression regulated adiposity in a strain-by-sex manner.
Fig. 7: Adipose Ndufv2 overexpression regulated mitochondria in a strain-by-sex manner.
Fig. 8: Adipose Ndufv2 overexpression increased mitochondrial biogenesis and protein levels via ROS generation by altering supercomplex composition in a strain-by-sex manner.

Similar content being viewed by others

Data availability

RNA sequencing raw data can be accessed at the Gene Expression Omnibus under accession GSE64770 (HMDP expression arrays (adipose and liver)) and GSE112947 (Gonadectomized RNA-seq data). GTEx datasets can be found online at the GTEx portal website (https://gtexportal.org/home/datasets). Uncropped scans of blots are available in the source data files. HMDP data from the authors laboratories will be made available on reasonable request. Source data are provided with this paper.

References

  1. Seldin, M., Yang, X. & Lusis, A. J. Systems genetics applications in metabolism research. Nat. Metab. 1, 1038–1050 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bennett, B. J. et al. A high-resolution association mapping panel for the dissection of complex traits in mice. Genome Res. 20, 281–290 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Parks, B. W. et al. Genetic control of obesity and gut microbiota composition in response to high-fat, high-sucrose diet in mice. Cell Metab. 17, 141–152 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Parks, B. W. et al. Genetic architecture of insulin resistance in the mouse. Cell Metab. 21, 334–347 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chella Krishnan, K. et al. Sex-specific metabolic functions of adipose Lipocalin-2. Mol. Metab. 30, 30–47 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Norheim, F. et al. Genetic, dietary, and sex-specific regulation of hepatic ceramides and the relationship between hepatic ceramides and IR. J. Lipid Res. 59, 1164–1174 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Norheim, F. et al. Genetic and hormonal control of hepatic steatosis in female and male mice. J. Lipid Res. 58, 178–187 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Org, E. et al. Sex differences and hormonal effects on gut microbiota composition in mice. Gut Microbes 7, 313–322 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chella Krishnan, K. et al. Integration of multi-omics data from mouse diversity panel highlights mitochondrial dysfunction in non-alcoholic fatty liver disease. Cell Syst. 6, 103–115 e107 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Hui, S. T. et al. The genetic architecture of diet-Induced hepatic fibrosis in mice. Hepatology 68, 2182–2196 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Norheim, F. et al. Gene-by-sex interactions in mitochondrial functions and cardio-metabolic traits. Cell Metab. 29, 932–949 e934 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Seldin, M. M. et al. A strategy for discovery of endocrine interactions with application to whole-body metabolism. Cell Metab. 27, 1138–1155 e1136 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Seldin, M. M. et al. A systems genetics approach identifies Trp53inp2 as a link between cardiomyocyte glucose utilization and hypertrophic response. Am. J. Physiol. Heart Circ. Physiol. 312, H728–H741 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yin, X. et al. Adipocyte mitochondrial function is reduced in human obesity independent of fat cell size. J. Clin. Endocrinol. Metab. 99, E209–E216 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Chouchani, E. T. et al. Complex I deficiency due to selective loss of Ndufs4 in the mouse heart results in severe hypertrophic cardiomyopathy. PLoS ONE 9, e94157 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Begriche, K., Igoudjil, A., Pessayre, D. & Fromenty, B. Mitochondrial dysfunction in NASH: causes, consequences and possible means to prevent it. Mitochondrion 6, 1–28 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Sanyal, A. J. et al. Nonalcoholic steatohepatitis: association of insulin resistance and mitochondrial abnormalities. Gastroenterology 120, 1183–1192 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Kim, J. A., Wei, Y. & Sowers, J. R. Role of mitochondrial dysfunction in insulin resistance. Circ. Res. 102, 401–414 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mittelstrass, K. et al. Discovery of sexual dimorphisms in metabolic and genetic biomarkers. PLoS Genet. 7, e1002215 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. White, U. A. & Tchoukalova, Y. D. Sex dimorphism and depot differences in adipose tissue function. Biochim. Biophys. Acta 1842, 377–392 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Yang, X. et al. Tissue-specific expression and regulation of sexually dimorphic genes in mice. Genome Res. 16, 995–1004 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Karp, N. A. et al. Prevalence of sexual dimorphism in mammalian phenotypic traits. Nat. Commun. 8, 15475 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wallace, D. C. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev. Genet. 39, 359–407 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Franzen, O. et al. Cardiometabolic risk loci share downstream cis- and trans-gene regulation across tissues and diseases. Science 353, 827–830 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Consortium, G. T. et al. Genetic effects on gene expression across human tissues. Nature 550, 204–213 (2017).

    Article  Google Scholar 

  26. Robin, E. D. & Wong, R. Mitochondrial DNA molecules and virtual number of mitochondria per cell in mammalian cells. J. Cell. Physiol. 136, 507–513 (1988).

    Article  CAS  PubMed  Google Scholar 

  27. Laakso, M. et al. The Metabolic Syndrome in Men study: a resource for studies of metabolic and cardiovascular diseases. J. Lipid Res. 58, 481–493 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Calvo, S. E., Clauser, K. R. & Mootha, V. K. MitoCarta2.0: an updated inventory of mammalian mitochondrial proteins. Nucleic Acids Res. 44, D1251–D1257 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Perry, R. J. et al. Hepatic acetyl CoA links adipose tissue inflammation to hepatic insulin resistance and type 2 diabetes. Cell 160, 745–758 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lapuente-Brun, E. et al. Supercomplex assembly determines electron flux in the mitochondrial electron transport chain. Science 340, 1567–1570 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Garcia-Poyatos, C. et al. Scaf1 promotes respiratory supercomplexes and metabolic efficiency in zebrafish. Embo Rep. 21, e50287 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cheng, C.-F., Ku, H.-C. & Lin, H. PGC-1α as a pivotal factor in lipid and metabolic regulation. Int. J. Mol. Sci. 19, 3447 (2018).

    Article  PubMed Central  Google Scholar 

  33. Lee, J. H. et al. The role of adipose tissue mitochondria: regulation of mitochondrial function for the treatment of metabolic diseases. Int. J. Mol. Sci. 20, 4924 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  34. Heinonen, S., Jokinen, R., Rissanen, A. & Pietilainen, K. H. White adipose tissue mitochondrial metabolism in health and in obesity. Obes. Rev. 21, e12958 (2020).

    Article  PubMed  Google Scholar 

  35. Benador, I. Y. et al. Mitochondria bound to lipid droplets have unique bioenergetics, composition, and dynamics that support lipid droplet expansion. Cell Metab. 27, 869–885.e866 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Acin-Perez, R. et al. A novel approach to measure mitochondrial respiration in frozen biological samples. EMBO J. 39, e104073 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang, T. et al. Respiration in adipocytes is inhibited by reactive oxygen species. Obesity 18, 1493–1502 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. St-Pierre, J. et al. Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 127, 397–408 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Dogan, S. A. et al. Perturbed redox signaling exacerbates a mitochondrial myopathy. Cell Metab. 28, 764–775 e765 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Moreno-Loshuertos, R. et al. Differences in reactive oxygen species production explain the phenotypes associated with common mouse mitochondrial DNA variants. Nat. Genet. 38, 1261–1268 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Swierczek, M. et al. An electronic bus bar lies in the core of cytochrome bc1. Science 329, 451–454 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tormos, K. V. et al. Mitochondrial complex III ROS regulate adipocyte differentiation. Cell Metab. 14, 537–544 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Acin-Perez, R., Fernandez-Silva, P., Peleato, M. L., Perez-Martos, A. & Enriquez, J. A. Respiratory active mitochondrial supercomplexes. Mol. Cell 32, 529–539 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Acı́n-Pérez, R. et al. Respiratory complex III is required to maintain complex I in mammalian mitochondria. Mol. Cell 13, 805–815 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Maranzana, E., Barbero, G., Falasca, A. I., Lenaz, G. & Genova, M. L. Mitochondrial respiratory supercomplex association limits production of reactive oxygen species from complex I. Antioxid. Redox Signal 19, 1469–1480 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nookaew, I. et al. Adipose tissue resting energy expenditure and expression of genes involved in mitochondrial function are higher in women than in men. J. Clin. Endocrinol. Metab. 98, E370–E378 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Hirst, J. Mitochondrial complex I. Annu. Rev. Biochem. 82, 551–575 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Fiedorczuk, K. et al. Atomic structure of the entire mammalian mitochondrial complex I. Nature 538, 406–410 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhu, J., Vinothkumar, K. R. & Hirst, J. Structure of mammalian respiratory complex I. Nature 536, 354–358 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Karamanlidis, G. et al. Mitochondrial complex I deficiency increases protein acetylation and accelerates heart failure. Cell Metab. 18, 239–250 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Urra, F. A., Munoz, F., Lovy, A. & Cardenas, C. The mitochondrial complex(i)ty of cancer. Front Oncol. 7, 118 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Papa, S. & De Rasmo, D. Complex I deficiencies in neurological disorders. Trends Mol. Med. 19, 61–69 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. Dröse, S. & Brandt, U. Advances in experimental medicine and biology. Adv. Exp. Med Biol. 748, 145–169 (2012).

    Article  PubMed  Google Scholar 

  54. Lazarou, M., McKenzie, M., Ohtake, A., Thorburn, D. R. & Ryan, M. T. Analysis of the assembly profiles for mitochondrial- and nuclear-DNA-encoded subunits into complex I. Mol. Cell. Biol. 27, 4228–4237 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Szczepanowska, K. et al. A salvage pathway maintains highly functional respiratory complex I. Nat. Commun. 11, 1643 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Latorre-Pellicer, A. et al. Mitochondrial and nuclear DNA matching shapes metabolism and healthy ageing. Nature 535, 561–565 (2016).

    Article  CAS  PubMed  Google Scholar 

  57. Boudina, S. & Graham, T. E. Mitochondrial function/dysfunction in white adipose tissue. Exp. Physiol. 99, 1168–1178 (2014).

    Article  PubMed  Google Scholar 

  58. Krawczyk, S. A., Haller, J. F., Ferrante, T., Zoeller, R. A. & Corkey, B. E. Reactive oxygen species facilitate translocation of hormone sensitive lipase to the lipid droplet during lipolysis in human differentiated adipocytes. PLoS ONE 7, e34904 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Masschelin, P. M., Cox, A. R., Chernis, N. & Hartig, S. M. The impact of oxidative stress on adipose tissue energy balance. Front Physiol. 10, 1638 (2019).

    Article  PubMed  Google Scholar 

  60. Acín-Pérez, R. et al. Fgr kinase is required for proinflammatory macrophage activation during diet-induced obesity. Nat. Metab. 2, 974–988 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Reaven, G. M. Banting Lecture 1988. Role of insulin resistance in human disease. Diabetes 37, 1595–1607 (1988).

    Article  CAS  PubMed  Google Scholar 

  62. Lusis, A. J., Attie, A. D. & Reue, K. Metabolic syndrome: from epidemiology to systems biology. Nat. Rev. Genet. 9, 819–830 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gagnon, D. & Kenny, G. P. Does sex have an independent effect on thermoeffector responses during exercise in the heat? J. Physiol. 590, 5963–5973 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E. & Storey, J. D. The SVA package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 28, 882–883 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lippert, C. et al. FaST linear mixed models for genome-wide association studies. Nat. Methods 8, 833–835 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Vergnes, L., Chin, R., Young, S. G. & Reue, K. Heart-type fatty acid-binding protein is essential for efficient brown adipose tissue fatty acid oxidation and cold tolerance. J. Biol. Chem. 286, 380–390 (2011).

    Article  CAS  PubMed  Google Scholar 

  67. Rooney, J. P. et al. PCR based determination of mitochondrial DNA copy number in multiple species. Methods Mol. Biol. 1241, 23–38 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Venegas, V. & Halberg, M. C. Measurement of mitochondrial DNA copy number. Methods Mol. Biol. 837, 327–335 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Keane, T. M. et al. Mouse genomic variation and its effect on phenotypes and gene regulation. Nature 477, 289–294 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Link, V. M., Romanoski, C. E., Metzler, D. & Glass, C. K. MMARGE: Motif Mutation Analysis for Regulatory Genomic Elements. Nucleic Acids Res. 46, 7006–7021 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. O’Neill, S. M. et al. Targeting adipose tissue via systemic gene therapy. Gene Ther. 21, 653–661 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Vandesompele, J. et al. Accurate normalization of real-time quantitative RT–PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3, RESEARCH0034 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Rogers, G. W. et al. High throughput microplate respiratory measurements using minimal quantities of isolated mitochondria. PLoS ONE 6, e21746 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Brand, M. D. & Nicholls, D. G. Assessing mitochondrial dysfunction in cells. Biochem. J. 435, 297–312 (2011).

    Article  CAS  PubMed  Google Scholar 

  76. Affourtit, C., Jastroch, M. & Brand, M. D. Uncoupling protein-2 attenuates glucose-stimulated insulin secretion in INS-1E insulinoma cells by lowering mitochondrial reactive oxygen species. Free Radic. Biol. Med. 50, 609–616 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Osto, C. et al. Measuring mitochondrial respiration in previously frozen biological samples. Curr. Protoc. Cell Biol. 89, e116 (2020).

    Article  CAS  PubMed  Google Scholar 

  78. Garaude, J. et al. Mitochondrial respiratory-chain adaptations in macrophages contribute to antibacterial host defense. Nat. Immunol. 17, 1037–1045 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinf. 9, 559 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

We thank Z. Zhou, Y. Meng, S. Charugundla, D. W. Jayasekera, S. Nand and J. Ure for assistance in experiments. This work was supported by NIH grants NIH-P01HL028481, NIH-R01DK117850 and NIH-R01HL144651 (A.J.L.), NIH-R01HL125863 (J.L.M.B.), NIH-R01HL147187 (C.E.R.), NIH-1R01AA026914-01A1 (M. Liesa), NIH-R00DK120875 (K.C.K) and NIH-K99DK120875 (K.C.K); UCLA/UCSD/CTSI grants P30DK41301 (M. Liesa), UL1TR001881 (M. Liesa), P30DK063491 (M. Liesa); the American Heart Association grants A14SFRN20840000 (J.L.M.B.) and 18POST33990256 (K.C.K.); the Academy of Finland 321428 (M. Laakso); the Swedish Research Council 2018-02529 (J.L.M.B); Heart Lung Foundation 20170265 (J.L.M.B.); Astra-Zeneca through ICMC, Karolinska Institutet, Sweden (J.L.M.B.) and the Foundation Leducq 12CVD04 (L.V. and K.R.) and 18CVD02 (J.L.M.B.). The funders had no role in the study design, data collection and interpretation, or the decision to submit the work for publication.

Author information

Authors and Affiliations

Authors

Contributions

K.C.K. and A.J.L. conceived the study. K.C.K., L.V., R.A.P., L.S., M.S., L.M., E.M., C.P., T.M.M., M.P., C.E.R., K.R., J.L.M.B., M. Laakso, M.Liesa and A.J.L. performed experiments or analysed the data. K.C.K. and A.J.L. drafted the manuscript. All authors read or revised the manuscript.

Corresponding authors

Correspondence to Karthickeyan Chella Krishnan or Aldons J. Lusis.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Primary handling editors: George Caputa and Isabella Samuelson. Nature Metabolism thanks Lawrence Kazak and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Chr17 locus is not associated with liver mitochondria.

Related to Fig. 3. High-resolution association mapping of 911 (1312 probes) mitochondrial gene abundance levels from (a) male and (b) female liver tissues isolated from ~100 HMDP strains to identify eQTL networks. The X- and Y- axis represent SNP and gene position on the mouse genome, respectively. Each dot represents a significant association. (c) Frequency distributions of P values of association between the chr17 trans-eQTL lead eSNP (rs48062344) and mitochondria-related transcripts in the male and female liver tissues. P values of association were calculated using (A – C) FaST-LMM that uses Likelihood-Ratio test.

Extended Data Fig. 2 Chr17 trans-eQTL do not affect the expression profiles of OXPHOS genes in male adipose or both sexes of liver tissues.

Related to Fig. 4. Volcano plots showing genetic (lead SNP of chr17 locus) differences in the expression profiles of OXPHOS genes in the (a) male adipose (n = 98 male strains; CC: 56 & TT: 42); (b) female and (c) male liver (n = 97 sex-matched strains; CC: 55 & TT: 42) isolated from HMDP. Genes corresponding to individual OXPHOS complexes are color-coded. Horizontal dotted lines represent 5% FDR-corrected significance threshold. Data are presented as log2 fold change between genotype. P values were calculated using (A – C) DESeq2 Bioconductor package that uses Wald test.

Extended Data Fig. 3 Association mapping of adipose mtDNA levels in HMDP.

Related to Fig. 4. Association mapping of mtDNA levels from (a) female and (b) male adipose in the HMDP cohort (n = 216 female and 260 male mice) Red line represents significance threshold (HMDP: P = 4.1E-06). P values of association were calculated using (A – B) FaST-LMM that uses Likelihood-Ratio test.

Extended Data Fig. 4 Liver Ndufv2 is unaffected by the chr17 trans-eQTL locus.

Related to Fig. 5. Association mapping of (a) male and (b) female liver Ndufv2 expression from HMDP. Red line represents significance threshold (P = 4.1E-06). (ce) Sex and genetic (lead SNP of chr17 locus) differences in the liver Ndufv2 expression from HMDP (n = 97 sex-matched strains; CC: 55 & TT: 42). Data are presented as median and interquartile range (boxplots). P values were calculated using (A – B) FaST-LMM that uses Likelihood-Ratio test; (C – E) Unpaired two-tailed Student’s t test.

Extended Data Fig. 5 Changes in body weight and insulin sensitivity mediated by adipose Ndufv2 overexpression.

Related to Fig. 6. Eight-week old females or males of (ab) C57BL/6 J or (cj) A/J mice were injected with AAV vectors expressing either GFP or NDUFV2 in an adipose-specific manner and fed a HF/HS diet for eight additional weeks. Changes in (A - D) fat mass and total body weight measured every two-weeks (females n = 7 per group; males n = 8 per group), (E and H) ITT, (F and I) end-point HOMA-IR and (G and J) fasting insulin levels (F – A/J n = 8 per group; M – A/J GFP n = 7, NDUFV2 n = 8) are shown. Data are presented as mean ± SEM. P values were calculated using (A – E and H) Repeated measures 2-factor ANOVA corrected by post-hoc ‘Holm-Sidak’s’ multiple comparisons test; (F, G, I and J) Unpaired two-tailed Student’s t test.

Extended Data Fig. 6 Adipose Ndufv2 overexpression regulated adiposity in a sex-by-strain manner.

Related to Fig. 6. Eight-week old males of (ae) C57BL/6 J or (fj) A/J mice were injected with AAV vectors expressing either GFP or NDUFV2 in an adipose-specific manner and fed a HF/HS diet for eight additional weeks. Metabolic traits such as (A and F) total mass and food intake; (B and G) fat and lean mass were monitored over eight weeks. Comparisons of (C and H) adipose Ndufv2 expression; (D and I) plasma free glycerol; (E and J) tissue weights from C57BL/6 J and A/J males, respectively. Data are presented as mean ± SEM (n = 8 per group). P values were calculated using (A and F) Repeated measures 2-factor or (B and G) 3-factor or (E and J) 2-factor ANOVA corrected by post-hoc ‘Holm-Sidak’s’ multiple comparisons test; (C, D, H and I) Unpaired two-tailed Student’s t test.

Extended Data Fig. 7 Adipose Ndufv2 overexpression regulated adipocyte size in a sex-by-strain manner.

Related to Fig. 7. Comparisons of adipocyte size distribution in the gonadal adipose tissues from females and males of (ab) C57BL/6 J or (cd) A/J mice overexpressing GFP or NDUFV2, respectively. Representative histological sections are shown for each group (scale: 100 µm). Red and blue shades (or bars) represent female and male NDUFV2 datapoints, while brown represents respective GFP datapoints, respectively. Data are presented as frequency distribution of adipocyte sizes or mean ± SEM (F – C57BL/6 J GFP n = 5064 cells from 7 mice, NDUFV2 n = 5249 cells from 7 mice; M – C57BL/6 J GFP n = 11721 cells from 8 mice, NDUFV2 n = 7290 cells from 7 mice; F – A/J GFP n = 5423 cells from 7 mice, NDUFV2 n = 4687 cells from 7 mice; M – A/J GFP n = 4084 cells from 8 mice, NDUFV2 n = 4863 cells from 8 mice). P values were calculated using Unpaired two-tailed Student’s t test.

Extended Data Fig. 8 Adipose Ndufv2 overexpression regulated mitochondrial respiration in a sex-by-strain manner.

Related to Fig. 7. Comparisons of mitochondrial RCR and coupling efficiency in the gonadal adipose tissues from males of (ab) C57BL/6 J or (cd) A/J mice overexpressing GFP or NDUFV2, respectively. Coupling assays of isolated gonadal adipose mitochondria from females and males of (ef) C57BL/6 J or (gh) A/J mice overexpressing GFP or NDUFV2, respectively. Data are presented as mean ± SEM (n = 4 per group). P values were calculated using 2-factor ANOVA.

Extended Data Fig. 9 Adipose Ndufv2-mediated mitochondrial regulation is not a consequence of body weight.

Related to Fig. 7. Eight-week old female C57BL/6 J mice were fed a HF/HS diet for the first six weeks without any intervention, after which were injected with AAV vectors expressing either GFP or NDUFV2 in an adipose-specific manner and diet continued for six additional weeks. Metabolic traits such as (a) total mass; (b) fat and lean mass were monitored over 12 weeks. Comparisons of (c) tissue weights; (d) adipose Ndufv2 expression; (e) mitochondrial RCR; (f) coupling efficiency and (g) coupling respiration rates between GFP and NDUFV2 animals, respectively. Data are presented as mean ± SEM (n = 6 per group). P values were calculated using (A) Repeated measures 2-factor or (B) 3-factor or (C and G) 2-factor ANOVA corrected by post-hoc ‘Holm-Sidak’s’ multiple comparisons test; (D – F) Unpaired two-tailed Student’s t test.

Extended Data Fig. 10 Ndufv2 overexpression regulated mitochondrial function in both AML12 (liver) and differentiated 3T3-L1 (adipose) cells.

Related to Fig. 8. Comparisons between GFP and NDUFV2 overexpressing AML12 (liver) cells in (a) relative normalized expression values of Ndufv2 (n = 9 per group); Coupling assays and RCR with all three complex I substrates (Pyruvate, Palmitoyl carnitine and Glutamate) either added (be) together (n = 5 per group) or (f - m) separately (n = 4 per group except Glutamate, n = 8 per group); and (N) relative normalized expression values of Ndufs4 (complex I), Sdhc (complex II), Atp5a1 (complex V) and Cpt1a (FAO) (n = 9 per group). Similarly, comparisons between control and NDUFV2 overexpressing differentiated 3T3-L1 cells in (O – R) coupling assays and RCR with different substrates (Pyruvate, Palmitoyl carnitine and Succinate) added separately (n = 6 per group). Data are presented as mean ± SEM. P values were calculated using (A and J – N) Unpaired two-tailed Student’s t test; (B – I and O – R) 2-factor ANOVA corrected by post-hoc ‘Holm-Sidak’s’ multiple comparisons test.

Supplementary information

Supplementary Information

Supplementary Figs. 1–3 and Tables 4 and 5

Reporting Summary

Supplementary Table 1

Supplementary Tables 1–3

Source data

Source Data Fig. 7

Unprocessed western blots

Source Data Fig. 8

Unprocessed western blots

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chella Krishnan, K., Vergnes, L., Acín-Pérez, R. et al. Sex-specific genetic regulation of adipose mitochondria and metabolic syndrome by Ndufv2. Nat Metab 3, 1552–1568 (2021). https://doi.org/10.1038/s42255-021-00481-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42255-021-00481-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing