Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Selective electrosynthesis of chlorine disinfectants from seawater

Abstract

As one of the most widely used disinfectants, active chlorine is synthesized predominantly through electrolysis of saturated sodium chloride solutions, an industrial process known as the chlor-alkali process, with high energy consumption. Seawater is an abundant source of chloride and thus an ideal alternative electrolyte. However, substantial challenges are to be addressed, notably the competing oxygen evolution reaction and progressive anode passivation due to the presence of rich cations in seawater. Here, we show durable and efficient active chlorine electrosynthesis directly from natural seawater with intrinsic turnover frequency and mass activity two orders of magnitude higher than the state of the art. The essential chemistry is an Fe-doped Ti4O7 anode that strengthens the electrophilicity of lattice oxygen to allow for site-selective chloride activation at remarkably lowered kinetic overpotentials relative to the oxygen evolution reaction, while also impeding the precipitation of alkaline earth metal cations on the Ti4O7 surface. A seawater splitting device with an integrated commercial silicon photovoltaic cell delivers an impressive active chlorine production rate of 3.15 mg min−1 for effective simulated ballast water disinfection. This work suggests the possibility to substantially improve the sustainability of the chlor-alkali process without compromising the synthetic performance for the mass production of disinfectants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Fine-structure characterizations.
Fig. 2: Electrochemical performance.
Fig. 3: Reaction mechanism study.
Fig. 4: Electrochemical stability.
Fig. 5: DFT calculations of CER and AC synthesis.
Fig. 6: Reactor design and performance.

Similar content being viewed by others

Data availability

Source data are provided with this paper.

References

  1. Ha, H. et al. Highly selective active chlorine generation electrocatalyzed by Co3O4 nanoparticles: mechanistic investigation through in situ electrokinetic and spectroscopic analyses. J. Phys. Chem. Lett. 10, 1226–1233 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Lim, T. et al. Atomically dispersed Pt–N4 sites as efficient and selective electrocatalysts for the chlorine evolution reaction. Nat. Commun. 11, 412 (2020).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  3. Wang, Y., Liu, Y., Wiley, D., Zhao, S. & Tang, Z. Recent advances in electrocatalytic chloride oxidation for chlorine gas production. J. Mater. Chem. A 9, 18974–18993 (2021).

    Article  CAS  Google Scholar 

  4. Chen, S., Zheng, Y., Wang, S. & Chen, X. Ti/RuO2–Sb2O5–SnO2 electrodes for chlorine evolution from seawater. Chem. Eng. J. 172, 47–51 (2011).

    Article  CAS  Google Scholar 

  5. Hsu, S.-H. et al. An earth-abundant catalyst-based seawater photoelectrolysis system with 17.9% solar-to-hydrogen efficiency. Adv. Mater. 30, 1707261 (2018).

    Article  ADS  Google Scholar 

  6. Trasatti, S. Electrocatalysis: understanding the success of DSA®. Electrochim. Acta 45, 2377–2385 (2000).

    Article  CAS  Google Scholar 

  7. Yao, Y. et al. Single Atom Ru monolithic electrode for efficient chlorine evolution and nitrate reduction. Angew. Chem. Int. Ed. Engl. 61, e202208215 (2022).

    Article  CAS  PubMed  Google Scholar 

  8. Vos, J. G. et al. Selectivity trends between oxygen evolution and chlorine evolution on iridium-based double perovskites in acidic media. ACS Catal. 9, 8561–8574 (2019).

    Article  CAS  Google Scholar 

  9. Exner, K. S. Controlling stability and selectivity in the competing chlorine and oxygen evolution reaction over transition metal oxide electrodes. ChemElectroChem 6, 3401–3409 (2019).

    Article  CAS  Google Scholar 

  10. Karlsson, R. K. B. & Cornell, A. Selectivity between oxygen and chlorine evolution in the chlor-alkali and chlorate processes. Chem. Rev. 116, 2982–3028 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Wintrich, D. et al. Enhancing the selectivity between oxygen and chlorine towards chlorine during the anodic chlorine evolution reaction on a dimensionally stable anode. ChemElectroChem 6, 3108–3112 (2019).

    Article  CAS  Google Scholar 

  12. Dong, H., Yu, W. & Hoffmann, M. R. Mixed metal oxide electrodes and the chlorine evolution reaction. J. Phys. Chem. C 125, 20745–20761 (2021).

    Article  CAS  Google Scholar 

  13. Chen, H. et al. Wood aerogel-derived sandwich-like layered nanoelectrodes for alkaline overall seawater electrosplitting. Appl. Catal. B 293, 120215 (2021).

    Article  CAS  Google Scholar 

  14. Yu, L. et al. Hydrogen generation from seawater electrolysis over a sandwich-like NiCoN|NixP|NiCoN microsheet array catalyst. ACS Energy Lett. 5, 2681–2689 (2020).

    Article  MathSciNet  CAS  Google Scholar 

  15. Hausmann, J. N., Schlögl, R., Menezes, P. W. & Driess, M. Is direct seawater splitting economically meaningful? Energy Environ. Sci. 14, 3679–3685 (2021).

    Article  CAS  Google Scholar 

  16. Goryachev, A. et al. Electrochemical stability of RuO2(110)/Ru(0001) model electrodes in the oxygen and chlorine evolution reactions. Electrochim. Acta 336, 135713 (2020).

    Article  CAS  Google Scholar 

  17. Escudero-Escribano, M. et al. Importance of surface IrOx in stabilizing RuO2 for oxygen evolution. J. Phys. Chem. B 122, 947–955 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. You, S. et al. Monolithic porous Magnéli-phase Ti4O7 for electro-oxidation treatment of industrial wastewater. Electrochim. Acta 214, 326–335 (2016).

    Article  CAS  Google Scholar 

  19. Geng, P., Su, J., Miles, C., Comninellis, C. & Chen, G. Highly-ordered Magnéli Ti4O7 nanotube arrays as effective anodic material for electro-oxidation. Electrochim. Acta 153, 316–324 (2015).

    Article  CAS  Google Scholar 

  20. Tao, X. et al. Strong sulfur binding with conducting Magnéli-phase TinO2n–1 nanomaterials for improving lithium–sulfur batteries. Nano Lett. 14, 5288–5294 (2014).

    Article  CAS  PubMed  ADS  Google Scholar 

  21. Senevirathne, K., Hui, R., Campbell, S., Ye, S. & Zhang, J. Electrocatalytic activity and durability of Pt/NbO2 and Pt/Ti4O7 nanofibers for PEM fuel cell oxygen reduction reaction. Electrochim. Acta 59, 538–547 (2012).

    Article  CAS  Google Scholar 

  22. Yao, C., Li, F., Li, X. & Xia, D. Fiber-like nanostructured Ti4O7 used as durable fuel cell catalyst support in oxygen reduction catalysis. J. Mater. Chem. 22, 16560–16565 (2012).

    Article  CAS  Google Scholar 

  23. Gu, H. et al. Adjacent single-atom irons boosting molecular oxygen activation on MnO2. Nat. Commun. 12, 5422 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  24. Chen, Y. et al. Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem. Int. Ed. Engl. 56, 6937–6941 (2017).

    Article  CAS  PubMed  ADS  Google Scholar 

  25. Quan, F. et al. Electrochemical removal of ammonium nitrogen in high efficiency and N2 selectivity using non-noble single-atomic iron catalyst. J. Environ. Sci. 125, 544–552 (2023).

    Article  CAS  Google Scholar 

  26. Jing, Y., Almassi, S., Mehraeen, S., LeSuer, R. J. & Chaplin, B. P. The roles of oxygen vacancies, electrolyte composition, lattice structure, and doping density on the electrochemical reactivity of Magnéli phase TiO2 anodes. J. Mater. Chem. A 6, 23828–23839 (2018).

    Article  CAS  Google Scholar 

  27. Exner, K. S. Beyond the traditional volcano concept: overpotential-dependent volcano plots exemplified by the chlorine evolution reaction over transition-metal oxides. J. Phys. Chem. C. 123, 16921–16928 (2019).

    Article  CAS  Google Scholar 

  28. Yang, J. et al. Regulating the tip effect on single-atom and cluster catalysts: forming reversible oxygen species with high efficiency in chlorine evolution reaction. Angew. Chem. Int. Ed. Engl. 61, e202200366 (2022).

    Article  CAS  PubMed  Google Scholar 

  29. Exner, K. S., Anton, J., Jacob, T. & Over, H. Full kinetics from first principles of the chlorine evolution reaction over a RuO2 (110) model electrode. Angew. Chem. Int. Ed. Engl. 55, 7501–7504 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Karlsson, R. K. B., Hansen, H. A., Bligaard, T., Cornell, A. & Pettersson, L. G. M. Ti atoms in Ru0.3Ti0.7O2 mixed oxides form active and selective sites for electrochemical chlorine evolution. Electrochim. Acta 146, 733–740 (2014).

    Article  CAS  Google Scholar 

  31. Hansen, H. A. et al. Electrochemical chlorine evolution at rutile oxide (110) surfaces. Phys. Chem. Chem. Phys. 12, 283–290 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Cho, J. et al. Importance of broken geometric symmetry of single-atom Pt sites for efficient electrocatalysis. Nat. Commun. 14, 3233 (2023).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  33. Exner, K. S., Anton, J., Jacob, T. & Over, H. Chlorine evolution reaction on RuO2(110): ab initio atomistic thermodynamics study—Pourbaix diagrams. Electrochim. Acta 120, 460–466 (2014).

    Article  CAS  Google Scholar 

  34. Sumaria, V., Krishnamurthy, D. & Viswanathan, V. Quantifying confidence in DFT predicted surface Pourbaix diagrams and associated reaction pathways for chlorine evolution. ACS Catal. 8, 9034–9042 (2018).

    Article  CAS  Google Scholar 

  35. Yi, D. et al. Regulating charge transfer of lattice oxygen in single-atom-doped titania for hydrogen evolution. Angew. Chem. Int. Ed. Engl. 132, 15989–15993 (2020).

    Article  Google Scholar 

  36. Deng, J. et al. Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping. Energy Environ. Sci. 8, 1594–1601 (2015).

    Article  CAS  Google Scholar 

  37. Liu, J. et al. Low-dimensional metal–organic frameworks with high activity and selectivity toward electrocatalytic chlorine evolution reactions. J. Phys. Chem. C. 126, 7066–7075 (2022).

    Article  CAS  Google Scholar 

  38. Wang, W. et al. Visible light-induced marine bacterial inactivation in seawater by an in situ photo-fenton system without additional oxidants: implications for ballast water sterilization. ACS EST Water 1, 1483–1494 (2021).

    Article  CAS  Google Scholar 

  39. Chen, S. et al. Induction of Escherichia coli into a VBNC state through chlorination/chloramination and differences in characteristics of the bacterium between states. Water Res. 142, 279–288 (2018).

    Article  CAS  PubMed  ADS  Google Scholar 

  40. Lee, O.-M., Kim, H. Y., Park, W., Kim, T.-H. & Yu, S. A comparative study of disinfection efficiency and regrowth control of microorganism in secondary wastewater effluent using UV, ozone, and ionizing irradiation process. J. Hazard. Mater. 295, 201–208 (2015).

    Article  CAS  PubMed  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (grant nos. 2022YFC3702101, 2021YFA1201701, 2022YFA1505000), the National Natural Science Foundation of China (grant nos. U22A20402, 21936003, 22076061, 22206124), the Natural Science Foundation of Shanghai (grant no. 23ZR1431000) and the China Postdoctoral Science Foundation (grant no. 2022M712049).

Author information

Authors and Affiliations

Authors

Contributions

L.Z. and H.L. supervised the project. H.L., S.Z. and H.S. conceived and designed the experiments. S.Z. conducted the material synthesis and characterizations, the electrochemical experiments and the DFT calculations. G.Z. contributed to the DFT calculations. H.S., Y.S. and Y.J. contributed to the sterilization experiment. M.L. and C.L. contributed to the electrode manufacture. J.D. and Y.Y. commented on the manuscript. S.Z., H.L. and L.Z. wrote the manuscript.

Corresponding authors

Correspondence to Hao Li, Hongwei Sun or Lizhi Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Kai Exner and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–37 and Tables 1–3.

Reporting Summary

Source data

Source Data Fig. 1

Source data for the XRD patterns, normalized XANES spectra and Fourier-transform K-edge EXAFS spectra.

Source Data Fig. 2

Source data for the electrochemical performance.

Source Data Fig. 3

Source data of electrochemically active surface areas, Cl 2p XPS and H2-TPR.

Source Data Fig. 4

Source data for the chronopotentiometric curve, Ca2+ 2p XPS and Zeta potential.

Source Data Fig. 5

Source data for TDOS and PDOS.

Source Data Fig. 6

Source data for the J-V curve, AC electrochemical synthesis and sterilization.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, S., Li, H., Dai, J. et al. Selective electrosynthesis of chlorine disinfectants from seawater. Nat Sustain 7, 148–157 (2024). https://doi.org/10.1038/s41893-023-01265-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-023-01265-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing