Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Coculture of primary human colon monolayer with human gut bacteria

Abstract

The presence of microbes in the colon impacts host physiology. Therefore, microbes are being evaluated as potential treatments for colorectal diseases. Humanized model systems that enable robust culture of primary human intestinal cells with bacteria facilitate evaluation of potential treatments. Here, we describe a protocol that can be used to coculture a primary human colon monolayer with aerotolerant bacteria. Primary human colon cells maintained as organoids are dispersed into single-cell suspensions and then seeded on collagen-coated Transwell inserts, where they attach and proliferate to form confluent monolayers within days of seeding. The confluent monolayers are differentiated for an additional 4 d and then cocultured with bacteria. As an example application, we describe how to coculture differentiated colon cells for 8 h with four strains of Bacteroides thetaiotaomicron, each engineered to detect different colonic microenvironments via genetically embedded logic circuits incorporating deoxycholic acid and anhydrotetracycline sensors. Characterization of this coculture system reveals that barrier function remains intact in the presence of engineered B. thetaiotaomicron. The bacteria stay close to the mucus layer and respond in a microenvironment-specific manner to the inducers (deoxycholic acid and anhydrotetracycline) of the genetic circuits. This protocol thus provides a useful mucosal barrier system to assess the effects of bacterial cells that respond to the colonic microenvironment, and may also be useful in other contexts to model human intestinal barrier properties and microbiota–host interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic workflow to generate differentiated colon epithelial monolayers and coculture with engineered B. thetaiotaomicron.
Fig. 2: The success rate of generating usable monolayers and the cell viability of single cells from dissociated organoids used for monolayer seeding.
Fig. 3: Morphology of primary human colon organoids.
Fig. 4: Example of organoid expansion after each passaging.
Fig. 5: Representative images of failed monolayers that show regions with holes or the presence of excessive dead cells after exposure to bacterial medium.
Fig. 6: Representative images of organoids, monolayers and proliferative cells in those monolayers.
Fig. 7: Evaluation on the integrity of monolayers and response of B. thetaiotaomicron to inducers after coculture.

Similar content being viewed by others

Data availability

Source data are provided with this paper. Additional imaging data are in the Supplementary Tables or are available from the corresponding author upon reasonable request.

References

  1. Molly, K., Vande Woestyne, M. & Verstraete, W. Development of a 5-step multi-chamber reactor as a simulation of the human intestinal microbial ecosystem. Appl. Microbiol. Biotechnol. 39, 254–258 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. Venema, K. & van den Abbeele, P. Experimental models of the gut microbiome. Best Pract. Res. Clin. Gastroenterol. 27, 115–126 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Molly, K., Woestyne, M. V., Smet, I. D. & Verstraete, W. Validation of the Simulator of the Human Intestinal Microbial Ecosystem (SHIME) reactor using microorganism-associated activities. Microb. Ecol. Health Dis. 7, 191–200 (1994).

    Google Scholar 

  4. Cinquin, C., Le Blay, G., Fliss, I. & Lacroix, C. New three-stage in vitro model for infant colonic fermentation with immobilized fecal microbiota. FEMS Microbiol. Ecol. 57, 324–336 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Trapecar, M., Goropevsek, A., Gorenjak, M., Gradisnik, L. & Slak Rupnik, M. A co-culture model of the developing small intestine offers new insight in the early immunomodulation of enterocytes and macrophages by Lactobacillus spp. through STAT1 and NF-kB p65 translocation. PLoS ONE 9, e86297 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Kim, H. J., Li, H., Collins, J. J. & Ingber, D. E. Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip. Proc. Natl Acad. Sci. 113, E7–E15 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Kim, H. J. & Ingber, D. E. Gut-on-a-Chip microenvironment induces human intestinal cells to undergo villus differentiation. Integr. Biol. (Camb) 5, 1130–1140 (2013).

    Article  CAS  Google Scholar 

  8. Zhou, W. D. et al. Multifunctional bioreactor system for human intestine tissues. ACS Biomater. Sci. Eng. 4, 231–239 (2018).

    Article  CAS  PubMed  Google Scholar 

  9. Park, G. S. et al. Emulating host-microbiome ecosystem of human gastrointestinal tract in vitro. Stem Cell Rev. Rep. 13, 321–334 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Taketani, M. et al. Genetic circuit design automation for Bacteroides, applied to integrate signals from bile acid and antibiotic sensors. Nat. Biotechnol. 38, 962–969 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Riglar, D. T. et al. Engineered bacteria can function in the mammalian gut long-term as live diagnostics of inflammation. Nat. Biotechnol. 35, 653–658 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kurtz, C. B. et al. An engineered E. coli Nissle improves hyperammonemia and survival in mice and shows dose-dependent exposure in healthy humans. Sci. Transl. Med. 11, eaau7975 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. Isabella, V. M. et al. Development of a synthetic live bacterial therapeutic for the human metabolic disease phenylketonuria. Nat. Biotechnol. 36, 857–864 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Mimee, M., Tucker, A. C., Voigt, C. A. & Lu, T. K. Programming a human commensal bacterium, Bacteroides thetaiotaomicron, to sense and respond to stimuli in the murine gut microbiota. Cell Syst. 2, 214–214 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Tropini, C., Earle, K. A., Huang, K. C. & Sonnenburg, J. L. The gut microbiome: connecting spatial organization to function. Cell Host Microbe 21, 433–442 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rawls, J. F., Mahowald, M. A., Ley, R. E. & Gordon, J. I. Reciprocal gut microbiota transplants from zebrafish and mice to germ-free recipients reveal host habitat selection. Cell 127, 423–433 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Arrieta, M. C., Walter, J. & Finlay, B. B. Human microbiota-associated mice: a model with challenges. Cell Host Microbe 19, 575–578 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Ulluwishewa, D. et al. Live Faecalibacterium prausnitzii in an apical anaerobic model of the intestinal epithelial barrier. Cell Microbiol. 17, 226–240 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Shin, W. et al. A robust longitudinal co-culture of obligate anaerobic gut microbiome with human intestinal epithelium in an anoxic-oxic interface-on-a-chip. Front. Bioeng. Biotechnol. 7, 13 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Fofanova, T. Y. et al. A novel human enteroid-anaerobe co-culture system to study microbial-host interaction under physiological hypoxia. Preprint at bioRxiv https://doi.org/10.1101/555755 (2019).

  21. Shah, P. et al. A microfluidics-based in vitro model of the gastrointestinal human–microbe interface. Nat. Commun. 7, 11535–11535 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen, Y. et al. Robust bioengineered 3D functional human intestinal epithelium. Sci. Rep. 5, 13708 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen, Y., Zhou, W. D., Roh, T., Estes, M. K. & Kaplan, D. L. In vitro enteroid-derived three-dimensional tissue model of human small intestinal epithelium with innate immune responses. PLoS ONE 12, e0187880 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Jalili-Firoozinezhad, S. et al. A complex human gut microbiome cultured in an anaerobic intestine-on-a-chip. Nat. Biomed. Eng. 3, 520–531 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sadabad, M. S. et al. A simple coculture system shows mutualism between anaerobic faecalibacteria and epithelial Caco-2 cells. Sci. Rep. 5, 17906 (2015).

    Article  CAS  Google Scholar 

  26. Zhang, J. et al. Primary human colonic mucosal barrier crosstalk with super oxygen-sensitive Faecalibacterium prausnitzii in continuous culture. Med 2, 74–98 (2021).

    Article  PubMed  Google Scholar 

  27. Kozuka, K. et al. Development and characterization of a human and mouse intestinal epithelial cell monolayer platform. Stem Cell Rep. 9, 1976–1990 (2017).

    Article  CAS  Google Scholar 

  28. Bhatt, A. P. et al. Nonsteroidal anti-inflammatory drug-induced leaky gut modeled using polarized monolayers of primary human intestinal epithelial cells. ACS Infect. Dis. 4, 46–52 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. Wilke, et al. in In vitro culture of cryptosporidium parvum using stem cell-derived intestinal epithelial monolayers (eds Mead, J. R. & Arrowood, M. J.) Ch. 20, 351–372 (Springer, 2020).

  30. Madden, L. R. et al. Bioprinted 3D primary human intestinal tissues model aspects of native physiology and ADME/Tox functions. iScience 2, 156–167 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Freire, R. et al. Human gut derived-organoids provide model to study gluten response and effects of microbiota-derived molecules in celiac disease. Sci Rep. 9, 7029 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Wang, Y. et al. Self-renewing monolayer of primary colonic or rectal epithelial cells. Cell Mol. Gastroenterol. Hepatol. 4, 165–182 e167 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hubatsch, I., Ragnarsson, E. G. & Artursson, P. Determination of drug permeability and prediction of drug absorption in Caco-2 monolayers. Nat. Protoc. 2, 2111–2119 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Kasendra, M. et al. Development of a primary human Small Intestine-on-a-Chip using biopsy-derived organoids. Sci. Rep. 8, 2871 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Kasendra, M. et al. Duodenum Intestine-Chip for preclinical drug assessment in a human relevant model. eLife https://doi.org/10.7554/eLife.50135 (2020).

  36. Wang, Y. et al. In vitro generation of mouse colon crypts. ACS Biomater. Sci. Eng. 3, 2502–2513 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hinman, S. S., Wang, Y., Kim, R. & Allbritton, N. L. In vitro generation of self-renewing human intestinal epithelia over planar and shaped collagen hydrogels. Nat. Protoc. 16, 352–382 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. Wang, Y. et al. Analysis of interleukin 8 secretion by a stem-cell-derived human-intestinal-epithelial-monolayer platform. Anal. Chem. 90, 11523–11530 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zamora, C. Y. et al. Application of a gut-immune co-culture system for the study of N-glycan-dependent host–pathogen interactions of Campylobacter jejuni. Glycobiology 30, 374–381 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Noel, G. et al. A primary human macrophage-enteroid co-culture model to investigate mucosal gut physiology and host-pathogen interactions. Sci. Rep. 7, 45270 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ettayebi, K. et al. Replication of human noroviruses in stem cell–derived human enteroids. Science 353, 1387–1393 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Costantini, V. et al. Human norovirus replication in human intestinal enteroids as model to evaluate virus inactivation. Emerg. Infect. Dis. 24, 1453–1464 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kim, R. et al. An in vitro intestinal platform with a self-sustaining oxygen gradient to study the human gut/microbiome interface. Biofabrication 12, 015006 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Dutta, D., Heo, I. & Clevers, H. Disease modeling in stem cell-derived 3D organoid systems. Trends Mol. Med. 23, 393–410 (2017).

    Article  CAS  PubMed  Google Scholar 

  45. Hernandez-Gordillo, V. et al. Fully synthetic matrices for in vitro culture of primary human intestinal enteroids and endometrial organoids. Biomaterials https://doi.org/10.1016/j.biomaterials.2020.120125 (2020).

  46. Sato, T. et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459, 262–265 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Spence, J. R. et al. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature 470, 105–109 (2011).

    Article  PubMed  CAS  Google Scholar 

  48. McCracken, K. W., Howell, J. C., Wells, J. M. & Spence, J. R. Generating human intestinal tissue from pluripotent stem cells in vitro. Nat. Protoc. 6, 1920–1928 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Williamson, I. A. et al. A high-throughput organoid microinjection platform to study gastrointestinal microbiota and luminal physiology. Cell Mol. Gastroenterol. Hepatol. 6, 301–319 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kester, J. C. et al. Clostridioides difficile–associated antibiotics alter human mucosal barrier functions by microbiome-independent mechanisms. Antimicrob. Agents Chemother. https://doi.org/10.1128/AAC.01404-19 (2020).

  51. In, J. et al. Enterohemorrhagic Escherichia coli reduce mucus and intermicrovillar bridges in human stem cell-derived colonoids. Cell Mol. Gastroenterol. Hepatol. 2, 48–62 e43 (2016).

    Article  PubMed  Google Scholar 

  52. Trapecar, M. et al. Gut-liver physiomimetics reveal paradoxical modulation of IBD-related inflammation by short-chain fatty acids. Cell Syst. 10, 223–239 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ozdemir, T., Fedorec, A. J. H., Danino, T. & Barnes, C. P. Synthetic biology and engineered live biotherapeutics: toward increasing system complexity. Cell Syst. 7, 5–16 (2018).

    Article  CAS  PubMed  Google Scholar 

  54. Murakami, K. et al. Bile acids and ceramide overcome the entry restriction for GII.3 human norovirus replication in human intestinal enteroids. Proc. Natl Acad. Sci. 117, 1700 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Maier, E., Anderson, R. C., Altermann, E. & Roy, N. C. Live Faecalibacterium prausnitzii induces greater TLR2 and TLR2/6 activation than the dead bacterium in an apical anaerobic co-culture system. Cell. Microbiol. 20, e12805 (2018).

    Article  CAS  Google Scholar 

  56. VanDussen, K. L., Sonnek, N. M. & Stappenbeck, T. S. L-WRN conditioned medium for gastrointestinal epithelial stem cell culture shows replicable batch-to-batch activity levels across multiple research teams. Stem Cell Res. 37, 101430 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Srinivasan, B. et al. TEER measurement techniques for in vitro barrier model systems. J. Lab. Autom. 20, 107–126 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Institute of Health R01EB021908, the Boehringer Ingelheim SHINE Program, the NIH P50 grant (P50-GM098792), Office of Naval Research Multidisciplinary University Research Initiatives Program (N00014-13-1-0074), Defense Agency Research Projects Agency Synergistic Discovery and Design (SD2; FA8750-17-C-0229) and National Science Foundation Semiconductor Synthetic Biology for Information Processing and Storage Technologies (SemiSynBio; CCF-1807575) program. We thank O. Yilmaz for providing the colon organoid of donor HC2978. We are grateful for the lab management support from H. Lee (MIT).

Author information

Authors and Affiliations

Authors

Contributions

J.Z., C.W. and M.T. made the figures and tables. V.H.G, M.T., J.Z., K.S., C.W., M.T. and E.S. developed/validated the protocols. D.T.B., C.A.V. and L.G.G. supervised the experiments. J.Z., L.G.G., C.W. and C.A.V. wrote the manuscript with input from V.H.G, M.T. K.S., M.T. W.L.K.C., E.S., D.T.B. and R.L.C.

Corresponding author

Correspondence to Linda G. Griffith.

Ethics declarations

Competing interests

C.A.V. and M.T. have filed a provisional patent based on this work. All other authors have no competing interests.

Additional information

Peer review information Nature Protocols thanks Nicole Royand the other, anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Taketani, M. et al. Nat. Biotechnol. 38, 962–969 (2020): https://doi.org/10.1038/s41587-020-0468-5

Zhang, J. et al. Med 2, 74–98 (2021): https://doi.org/10.1016/j.medj.2020.07.001

Supplementary information

Supplementary Information

Supplementary Fig. 1.

Supplementary Table 1

Growth curve of B. thetaiotaomicron MT768

Supplementary Table 2

Calculation of RPUL from OD600 and luminescence data. Related to Fig. 7e

Supplementary Table 3

The OD600 and luminescence signal for bacterial cells collected from top and bottom of the apical compartment in the transwell inserts

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 6

Statistical source data.

Source Data Fig. 7

Statistical source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Hernandez-Gordillo, V., Trapecar, M. et al. Coculture of primary human colon monolayer with human gut bacteria. Nat Protoc 16, 3874–3900 (2021). https://doi.org/10.1038/s41596-021-00562-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-021-00562-w

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research