Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Microtiter plate assays to assess antibiofilm activity against bacteria

Abstract

Bacterial biofilms demonstrate high broad-spectrum adaptive antibiotic resistance and cause two thirds of all infections, but there is a lack of approved antibiofilm agents. Unlike the standard minimal inhibitory concentration assay to assess antibacterial activity against planktonic cells, there is no standardized method to evaluate biofilm inhibition and/or eradication capacity of novel antibiofilm compounds. The protocol described here outlines simple and reproducible methods for assessing the biofilm inhibition and eradication capacities of novel antibiofilm agents against adherent bacterial biofilms grown in 96-well microtiter plates. It employs two inexpensive dyes: crystal violet to stain adhered biofilm biomass and 2,3,5-triphenyl tetrazolium chloride to quantify metabolism of the biofilm cells. The procedure is accessible to any laboratory with a plate reader, requires minimal technical expertise or training and takes 4 or 5 d to complete. Recommendations for how biofilm inhibition and eradication results should be interpreted and presented are also described.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Workflow and timeline estimates for the biofilm inhibition (gray boxes) and eradication (white boxes) assays for testing the antibiofilm effects of antibiotics and HDPs.
Fig. 2: Biofilm inhibition of various antimicrobials versus S. aureus USA300 LAC and P. aeruginosa PAO1.
Fig. 3: Biofilm eradication assay results for various antimicrobials versus S. aureus USA300 LAC and P. aeruginosa PAO1.
Fig. 4: Biofilm CFUs recovery for P. aeruginosa PAO1 and S. aureus USA300 LAC biofilms.

Similar content being viewed by others

Data availability

The authors declare that all data generated or analyzed in this study are included in the article or in the accompanying supplementary information file. Source data are provided with this paper.

References

  1. Flemming, H.-C. et al. Biofilms: an emergent form of bacterial life. Nat. Rev. Microbiol. 14, 563–575 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Fernández, L., Breidenstein, E. B. M. & Hancock, R. E. W. Creeping baselines and adaptive resistance to antibiotics. Drug Resist. Updat. 14, 1–21 (2011).

    Article  PubMed  Google Scholar 

  3. Bryers, J. D. Medical biofilms. Biotechnol. Bioeng. 100, 1–18 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bjarnsholt, T. The role of bacterial biofilms in chronic infections. APMIS 121, 1–58 (2013).

    Article  Google Scholar 

  5. Verderosa, A. D., Totsika, M. & Fairfull-Smith, K. E. Bacterial biofilm eradication agents: a current review. Front. Chem. 7, 824 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Coenye, T., Kjellerup, B., Stoodley, P. & Bjarnsholt, T. The future of biofilm research—report on the ‘2019 Biofilm Bash’. Biofilm 2, 100012 (2020).

    Article  PubMed  Google Scholar 

  7. Römling, U. & Balsalobre, C. Biofilm infections, their resilience to therapy and innovative treatment strategies. J. Intern. Med. 272, 541–561 (2012).

    Article  PubMed  Google Scholar 

  8. Taff, H. T., Nett, J. E. & Andes, D. R. Comparative analysis of Candida biofilm quantitation assays. Med. Mycol. 50, 214–218 (2012).

    Article  PubMed  Google Scholar 

  9. Haney, E., Trimble, M., Cheng, J., Vallé, Q. & Hancock, R. Critical assessment of methods to quantify biofilm growth and evaluate antibiofilm activity of host defence peptides. Biomolecules 8, 29 (2018).

    Article  PubMed Central  Google Scholar 

  10. Wiegand, I., Hilpert, K. & Hancock, R. E. W. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 3, 163–175 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Beveridge, T. Use of the Gram stain in microbiology. Biotech. Histochem. 76, 111–118 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Berridge, M. V., Herst, P. M. & Tan, A. S. Tetrazolium dyes as tools in cell biology: New insights into their cellular reduction. Biotechnol. Annu. Rev. 11, 127–152 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Sabaeifard, P., Abdi-Ali, A., Soudi, M. R. & Dinarvand, R. Optimization of tetrazolium salt assay for Pseudomonas aeruginosa biofilm using microtiter plate method. J. Microbiol. Methods 105, 134–140 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Azeredo, J. et al. Critical review on biofilm methods. Crit. Rev. Microbiol. 43, 313–351 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. Peeters, E., Nelis, H. J. & Coenye, T. Comparison of multiple methods for quantification of microbial biofilms grown in microtiter plates. J. Microbiol. Methods 72, 157–165 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Haney, E. F. et al. Computer-aided discovery of peptides that specifically attack bacterial biofilms. Sci. Rep. 8, 1871 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Haney, E. F., Mansour, S., Hilchie, A. L., de la Fuente-Núñez, C. & Hancock, R. E. W. High throughput screening methods for assessing antibiofilm and immunomodulatory activities of synthetic peptides. Peptides 71, 276–285 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. de la Fuente-Núñez, C. et al. Inhibition of bacterial biofilm formation and swarming motility by a small synthetic cationic peptide. Antimicrob. Agents Chemother. 56, 2696–2704 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  19. de la Fuente-Núñez, C., Reffuveille, F., Haney, E. F., Straus, S. K. & Hancock, R. E. W. Broad-spectrum anti-biofilm peptide that targets a cellular stress response. PLoS Pathog. 10, (2014).

  20. Haney, E. F., Barbosa, S. C., Baquir, B. & Hancock, R. E. W. Influence of non-natural cationic amino acids on the biological activity profile of innate defense regulator peptides. J. Med. Chem. 62, 10294–10304 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Ommen, P., Zobek, N. & Meyer, R. L. Quantification of biofilm biomass by staining: Non-toxic safranin can replace the popular crystal violet. J. Microbiol. Methods 141, 87–89 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Toté, K., Berghe, D. V., Maes, L. & Cos, P. A new colorimetric microtitre model for the detection of Staphylococcus aureus biofilms. Lett. Appl. Microbiol. 46, 249–254 (2008).

    Article  PubMed  Google Scholar 

  23. Rajamani, S. et al. Robust biofilm assay for quantification and high throughput screening applications. J. Microbiol. Methods 159, 179–185 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. Navarro, G. et al. Image-based 384-well high-throughput screening method for the discovery of skyllamycins A to C as biofilm inhibitors and inducers of biofilm detachment in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 58, 1092–1099 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Tremblay, Y. D. N., Vogeleer, P., Jacques, M. & Harel, J. High-throughput microfluidic method to study biofilm formation and host-pathogen interactions in pathogenic Escherichia coli. Appl. Environ. Microbiol. 81, 2827–2840 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bridier, A., Dubois-Brissonnet, F., Boubetra, A., Thomas, V. & Briandet, R. The biofilm architecture of sixty opportunistic pathogens deciphered using a high throughput CLSM method. J. Microbiol. Methods 82, 64–70 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Bernardi, T. et al. High-throughput screening of metal-N-heterocyclic carbene complexes against biofilm formation by pathogenic bacteria. ChemMedChem 9, 1140–1144 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Olivares, E. et al. The BioFilm Ring Test: a rapid method for routine analysis of Pseudomonas aeruginosa biofilm formation kinetics. J. Clin. Microbiol. 54, 657–661 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ceri, H. et al. The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J. Clin. Microbiol. 37, 1771–1776 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Harrison, J. J. et al. Microtiter susceptibility testing of microbes growing on peg lids: a miniaturized biofilm model for high-throughput screening. Nat. Protoc. 5, 1236–1254 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Kragh, K. N., Alhede, M., Kvich, L. & Bjarnsholt, T. Into the well—a close look at the complex structures of a microtiter biofilm and the crystal violet assay. Biofilm 1, 100006 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Trunk, T., Khalil, H. S. & Leo, J. C. Bacterial autoaggregation. AIMS Microbiol 4, 140–164 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kragh, K. N. et al. Role of multicellular aggregates in biofilm formation. mBio 7, (2016).

  34. Harrison, J. J. et al. The use of microscopy and three-dimensional visualization to evaluate the structure of microbial biofilms cultivated in the Calgary Biofilm Device. Biol. Proced. Online 8, 194–215 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Molina-Manso, D. et al. In vitro susceptibility to antibiotics of staphylococci in biofilms isolated from orthopaedic infections. Int. J. Antimicrob. Agents 41, 521–523 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Ali, L., Khambaty, F. & Diachenko, G. Investigating the suitability of the Calgary Biofilm Device for assessing the antimicrobial efficacy of new agents. Bioresour. Technol. 97, 1887–1893 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Wong, H. S., Townsend, K. M., Fenwick, S. G., Trengove, R. D. & O’Handley, R. M. Comparative susceptibility of planktonic and 3-day-old Salmonella Typhimurium biofilms to disinfectants. J. Appl. Microbiol. 108, 2222–2228 (2010).

    CAS  PubMed  Google Scholar 

  38. Rivardo, F., Martinotti, M. G., Turner, R. J. & Ceri, H. The activity of silver against Escherichia coli biofilm is increased by a lipopeptide biosurfactant. Can. J. Microbiol. 56, 272–278 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Karygianni, L., Ren, Z., Koo, H. & Thurnheer, T. Biofilm matrixome: extracellular components in structured microbial communities. Trends Microbiol 28, 668–681 (2020).

    Article  CAS  PubMed  Google Scholar 

  40. Karunakaran, E., Mukherjee, J., Ramalingam, B. & Biggs, C. A. “Biofilmology”: a multidisciplinary review of the study of microbial biofilms. Appl. Microbiol. Biotechnol. 90, 1869–1881 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Benov, L. Effect of growth media on the MTT colorimetric assay in bacteria. PLoS ONE 14, e0219713 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Colquhoun, J. M., Wozniak, R. A. F. & Dunman, P. M. Clinically relevant growth conditions alter Acinetobacter baumannii antibiotic susceptibility and promote identification of novel antibacterial agents. PLoS ONE 10, e0143033 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Seneviratne, C. J., Yip, J. W. Y., Chang, J. W. W., Zhang, C. F. & Samaranayake, L. P. Effect of culture media and nutrients on biofilm growth kinetics of laboratory and clinical strains of Enterococcus faecalis. Arch. Oral Biol. 58, 1327–1334 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Palmer, K. L., Aye, L. M. & Whiteley, M. Nutritional cues control Pseudomonas aeruginosa multicellular behavior in cystic fibrosis sputum. J. Bacteriol. 189, 8079–8087 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pompilio, A. et al. Potential novel therapeutic strategies in cystic fibrosis: antimicrobial and anti-biofilm activity of natural and designed α-helical peptides against Staphylococcus aureus, Pseudomonas aeruginosa, and Stenotrophomonas maltophilia. BMC Microbiol 12, 145 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Haney, E. F. et al. Aggregation and its influence on the immunomodulatory activity of synthetic innate defense regulator peptides. Cell Chem. Biol. 24, 969–980.e4 (2017).

    Article  CAS  PubMed  Google Scholar 

  47. O’Toole, G. A. Microtiter dish biofilm formation assay. J. Vis. Exp. https://doi.org/10.3791/2437 (2011).

  48. Coffey, B. M. & Anderson, G. G. in Pseudomonas Methods and Protocols (eds Filloux, A. & Ramos, J.-L.) 631–641 (Springer, 2014).

  49. de la Fuente-Núñez, C. et al. D-enantiomeric peptides that eradicate wild-type and multidrug-resistant biofilms and protect against lethal Pseudomonas aeruginosa infections. Chem. Biol. 22, 196–205 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  50. McBain, A. J. in Advances in Applied Microbiology Vol. 69, Ch. 4, 99–132 (Academic Press, 2009).

  51. Lebeaux, D., Chauhan, A., Rendueles, O. & Beloin, C. From in vitro to in vivo models of bacterial biofilm-related infections. Pathogens 2, 288–356 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Our own biofilm work was supported by the Canadian Institutes of Health Research (CIHR), funding reference number FDN-154287. REWH holds a Canada Research Chair in Health and Genomics and a UBC Killam Professorship.

Author information

Authors and Affiliations

Authors

Contributions

E.F.H. and M.J.T. developed the protocols, collected and analyzed data, and wrote and edited the first draft of the manuscript. R.E.W.H. was involved in development of the protocol and extensively edited the manuscript.

Corresponding author

Correspondence to Robert E. W. Hancock.

Ethics declarations

Competing interests

E.F.H. and R.E.W.H. have invented and filed for patent protection on related antibiofilm peptide sequences. This patent has been assigned to their employer, the University of British Columbia, and licensed to ABT Innovations, in which R.E.W.H. has an ownership position. M.J.T. declares no competing interests.

Additional information

Peer review information Nature Protocols thanks Tom Coenye and Henny C. van der Mei for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Haney, E. F., Trimble, M. J., Cheng, J. T., Vallé, Q. & Hancock, R. E. Biomolecules 8, 29 (2018): https://doi.org/10.3390/biom8020029

Haney, E. F. et al. Sci. Rep. 8, 1871 (2018): https://doi.org/10.1038/s41598-018-19669-4

Haney, E. F., Barbosa, S. C., Baquir, B. & Hancock, R. E. W. J. Med. Chem. 62, 10294–10304 (2019): https://doi.org/10.1021/acs.jmedchem.9b01344

Supplementary information

Supplementary Information

Supplementary Figs. 1–6.

Reporting Summary

Supplementary Data 1

Data for Supplementary Figs. 2, 4 and 5

Source data

Source Data Fig. 2

Data for plots.

Source Data Fig. 3

Data for plots.

Source Data Fig. 4

Data for plots.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haney, E.F., Trimble, M.J. & Hancock, R.E.W. Microtiter plate assays to assess antibiofilm activity against bacteria. Nat Protoc 16, 2615–2632 (2021). https://doi.org/10.1038/s41596-021-00515-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-021-00515-3

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research