Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Magnetically guided virus stamping for the targeted infection of single cells or groups of cells

Abstract

To understand and control complex tissues, the ability to genetically manipulate single cells is required. However, current delivery methods for the genetic engineering of single cells, including viral transduction, suffer from limitations that restrict their application. Here we present a protocol that describes a versatile technique that can be used for the targeted viral infection of single cells or small groups of cells in any tissue that is optically accessible. First, cells of interest are selected using optical microscopy. Second, a micropipette—loaded with magnetic nanoparticles to which viral particles are bound—is brought into proximity of the cell of interest, and a magnetic field is applied to guide the viral nanoparticles into cellular contact, leading to transduction. The protocol, exemplified here by stamping cultured neurons with adeno-associated viruses (AAVs), is completed in a few minutes and allows stable transgene expression within a few days, at success rates that approach 80%. We outline how this strategy is applied to single-cell infection in complex tissues, and is feasible both in organoids and in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Virus stamping of a single cell by magnetically guiding virus-bound magnetic nanoparticles through a micropipette approaching the cell surface.
Fig. 2: Overview of the protocol.
Fig. 3: Functionalization of magnetic nanoparticles with viruses.
Fig. 4: Quality control of pipettes and virus stamping.
Fig. 5: Stamping of single and groups of cultured rat cortical neurons with single and multiple viruses.

Similar content being viewed by others

Data availability

The data shown in this protocol are available upon reasonable request.

References

  1. Akhtar, A. et al. A decade of molecular cell biology: achievements and challenges. Nat. Rev. Mol. Cell Biol. 12, 669–674 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Chari, R. & Church, G. M. Beyond editing to writing large genomes. Nat. Rev. Genet. 18, 749–760 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Wachsman, G. & Heidstra, R. The CRE/lox system as a tool for developmental studies at the cell and tissue level. Methods Mol. Biol. 655, 47–64 (2010).

    CAS  PubMed  Google Scholar 

  4. de la Fuente-Núñez, C. & Lu, T. K. CRISPR-Cas9 technology: applications in genome engineering, development of sequence-specific antimicrobials, and future prospects. Integr. Biol. 9, 109–122 (2017).

    Google Scholar 

  5. Murrow, L. M., Weber, R. J. & Gartner, Z. J. Dissecting the stem cell niche with organoid models: an engineering-based approach. Development 144, 998–1007 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Jaenisch, R. Transgenic animals. Science 240, 1468–1474 (1988).

    CAS  PubMed  Google Scholar 

  7. Weake, V. M. & Workman, J. L. Inducible gene expression: diverse regulatory mechanisms. Nat. Rev. Genet. 11, 426–437 (2010).

    CAS  PubMed  Google Scholar 

  8. Qi, L. S. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152, 1173–1183 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Maniatis, T., Goodbourn, S. & Fischer, J. A. Regulation of inducible and tissue-specific gene expression. Science 236, 1237–1245 (1987).

    CAS  PubMed  Google Scholar 

  10. Mello, C. C. & Conte, D. Jr. Revealing the world of RNA interference. Nature 431, 338–342 (2004).

    CAS  PubMed  Google Scholar 

  11. Ptashne, M. The chemistry of regulation of genes and other things. J. Biol. Chem. 289, 5417–5435 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268 (2005).

    CAS  PubMed  Google Scholar 

  13. Roth, B. L. DREADDs for neuroscientists. Neuron 89, 683–694 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Palop, J. J. et al. Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer’s disease. Neuron 55, 697–711 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Rossi, A. et al. Genetic compensation induced by deleterious mutations but not gene knockdowns. Nature 524, 230–233 (2015).

    CAS  PubMed  Google Scholar 

  16. Berchtold, N. C. et al. Gene expression changes in the course of normal brain aging are sexually dimorphic. Proc. Natl. Acad. Sci. USA 105, 15605–15610 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Matthaei, K. I. Genetically manipulated mice: a powerful tool with unsuspected caveats. J. Physiol. 582, 481–488 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Fugger, L., Friese, M. A. & Bell, J. I. From genes to function: the next challenge to understanding multiple sclerosis. Nat. Rev. Immunol. 9, 408–417 (2009).

    CAS  PubMed  Google Scholar 

  19. Cox, D. B., Platt, R. J. & Zhang, F. Therapeutic genome editing: prospects and challenges. Nat. Med. 21, 121–131 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Zeng, H. & Sanes, J. R. Neuronal cell-type classification: challenges, opportunities and the path forward. Nat. Rev. Neurosci. 18, 530–546 (2017).

    CAS  PubMed  Google Scholar 

  21. Kebschull, J. M. et al. High-throughput mapping of single-neuron projections by sequencing of barcoded RNA. Neuron 91, 975–987 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Schubert, R. et al. Virus stamping for targeted single-cell infection in vitro and in vivo. Nat. Biotechnol. 36, 81–88 (2018).

    CAS  PubMed  Google Scholar 

  23. Lotze, M. T. & Kost, T. A. Viruses as gene delivery vectors: application to gene function, target validation, and assay development. Cancer Gene Ther. 9, 692–699 (2002).

    CAS  PubMed  Google Scholar 

  24. Naso, M. F., Tomkowicz, B., Perry, W. L. & Strohl, W. R. Adeno-associated virus (AAV) as a vector for gene therapy. Biodrugs 31, 317–334 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Packer, A. M., Roska, B. & Häusser, M. Targeting neurons and photons for optogenetics. Nat. Neurosci. 16, 805–815 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Judkewitz, B., Rizzi, M., Kitamura, K. & Häusser, M. Targeted single-cell electroporation of mammalian neurons in vivo. Nat. Protoc. 4, 862–869 (2009).

    CAS  PubMed  Google Scholar 

  27. Wertz, A. et al. Single-cell-initiated monosynaptic tracing reveals layer-specific cortical network modules. Science 349, 70–74 (2015).

    CAS  PubMed  Google Scholar 

  28. Alsteens, D. et al. Atomic force microscopy-based characterization and design of biointerfaces. Nat. Rev. Mater. 2, 17008 (2017).

    CAS  Google Scholar 

  29. Rancz, E. A. et al. Transfection via whole-cell recording in vivo: bridging single-cell physiology, genetics and connectomics. Nat. Neurosci. 14, 527–532 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Marshel, J. H., Mori, T., Nielsen, K. J. & Callaway, E. M. Targeting single neuronal networks for gene expression and cell labeling in vivo. Neuron 67, 562–574 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Martínez-Martín, D. et al. Inertial picobalance reveals fast mass fluctuations in mammalian cells. Nature 550, 500–505 (2017).

    PubMed  Google Scholar 

  32. Stiefel, P. et al. Cooperative vaccinia infection demonstrated at the single-cell level using FluidFM. Nano Lett. 12, 4219–4227 (2012).

    CAS  PubMed  Google Scholar 

  33. Nguyen, T. D. et al. Targeted single-neuron infection with rabies virus for transneuronal multisynaptic tracing. J. Neurosci. Methods 209, 367–370 (2012).

    PubMed  PubMed Central  Google Scholar 

  34. Rancz, E. A. & Schaefer, A. T. Viruses leave their stamp on single cells. Nat. Biotechnol. 36, 42–44 (2018).

    CAS  PubMed  Google Scholar 

  35. Vogt, N. Putting a stamp on single cells. Nat. Methods 15, 95 (2018).

    CAS  Google Scholar 

  36. Muñoz, W., Tremblay, R. & Rudy, B. Channelrhodopsin-assisted patching: in vivo recording of genetically and morphologically identified neurons throughout the brain. Cell Rep. 9, 2304–2316 (2014).

    PubMed  PubMed Central  Google Scholar 

  37. Komazin-Meredith, G. et al. The positively charged surface of herpes simplex virus UL42 mediates DNA binding. J. Biol. Chem. 283, 6154–6161 (2008).

    CAS  PubMed  Google Scholar 

  38. Alsteens, D. et al. Nanomechanical mapping of first binding steps of a virus to animal cells. Nat. Nanotechnol. 12, 177–183 (2017).

    CAS  PubMed  Google Scholar 

  39. Ginger, M., Haberl, M., Conzelmann, K. K., Schwarz, M. K. & Frick, A. Revealing the secrets of neuronal circuits with recombinant rabies virus technology. Front. Neural Circuits 7, 2 (2013).

    PubMed  PubMed Central  Google Scholar 

  40. Rothermel, M., Brunert, D., Zabawa, C., Díaz -Quesada, M. & Wachowiak, M. Transgene expression in target-defined neuron populations mediated by retrograde infection with adeno-associated viral vectors. J. Neurosci. 33, 15195–15206 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Jurgens, H. A., Amancherla, K. & Johnson, R. W. Influenza infection induces neuroinflammation, alters hippocampal neuron morphology, and impairs cognition in adult mice. J. Neurosci. 32, 3958–3968 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Cronin, J., Zhang, X. Y. & Reiser, J. Altering the tropism of lentiviral vectors through pseudotyping. Curr. Gene Ther. 5, 387–398 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Walther, W. & Stein, U. Cell type specific and inducible promoters for vectors in gene therapy as an approach for cell targeting. J. Mol. Med. 74, 379–392 (1996).

    CAS  PubMed  Google Scholar 

  44. Conzelmann, K. K. Nonsegmented negative-strand RNA viruses: genetics and manipulation of viral genomes. Annu. Rev. Genet. 32, 123–162 (1998).

    CAS  PubMed  Google Scholar 

  45. Goldsmith, C. S. & Miller, S. E. Modern uses of electron microscopy for detection of viruses. Clin. Microbiol. Rev. 22, 552–563 (2009).

    PubMed  PubMed Central  Google Scholar 

  46. Uchida, E. et al. Optimization of the virus concentration method using polyethyleneimine-conjugated magnetic beads and its application to the detection of human hepatitis A, B and C viruses. J. Virol. Methods 143, 95–103 (2007).

    CAS  PubMed  Google Scholar 

  47. Phelan, K. & May, K. M. Basic techniques in mammalian cell tissue culture. Curr. Protoc. Cell Biol. 66, 1.1.1–1.1.22 (2015).

    Google Scholar 

  48. Pavlov, T. S. et al. Implementing patch clamp and live fluorescence microscopy to monitor functional properties of freshly isolated PKD epithelium. J. Vis. Exp. 103, e53035 (2015).

    Google Scholar 

  49. Booker, S. A., Song, J. & Vida, I. Whole-cell patch-clamp recordings from morphologically- and neurochemically-identified hippocampal interneurons. J. Vis. Exp. 91, e51706 (2014).

    Google Scholar 

  50. Stuart, G. J., Dodt, H. U. & Sakmann, B. Patch-clamp recordings from the soma and dendrites of neurons in brain slices using infrared video microscopy. Pflug. Arch. 423, 511–518 (1993).

    CAS  Google Scholar 

  51. Kitamura, K., Judkewitz, B., Kano, M., Denk, W. & Häusser, M. Targeted patch-clamp recordings and single-cell electroporation of unlabeled neurons in vivo. Nat. Methods 5, 61–67 (2008).

    CAS  PubMed  Google Scholar 

  52. Grutzendler, J., Kasthuri, N. & Gan, W. B. Long-term dendritic spine stability in the adult cortex. Nature 420, 812–816 (2002).

    CAS  PubMed  Google Scholar 

  53. Chou, S. J. et al. Analysis of spatial-temporal gene expression patterns reveals dynamics and regionalization in developing mouse brain. Sci. Rep. 6, 19274 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Ran, Y. F. et al. Rapid, highly sensitive detection of herpes simplex virus-1 using multiple antigenic peptide-coated superparamagnetic beads. Analyst 139, 6126–6134 (2014).

    CAS  PubMed  Google Scholar 

  55. Kendall, C. G. et al. Amine analysis using AlexaFluor 488 succinimidyl ester and capillary electrophoresis with laser-induced fluorescence. J. Anal. Methods Chem. 2015, 368362 (2015).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank P. Buchmann and P. Argast for building our magnet Supplementary Figure 1. The study was supported by an European Union grant (FP7/211800 to D.J.M.), a Canada Research Chair (Tier II to S.T.), Swiss National Science Foundation grants (310030B_160225 to D.J.M. and 3100330B_163457 to B.R.), the National Center of Competence in Research (NCCR) Molecular Systems Engineering (to D.J.M. and B.R.), the European Research Council (669157, RETMUS to B.R.) and a DARPA grant (HR0011-17-C-0038, Cortical Sight to B.R.).

Author information

Authors and Affiliations

Authors

Contributions

All authors discussed the protocol and contributed to the writing of the protocol. R.S., S.H. and S.T. designed and optimized the experiments described. Figures and videos were created by R.S., S.H. and S.T.

Corresponding authors

Correspondence to Botond Roska or Daniel J. Müller.

Ethics declarations

Competing interests

R.S., S.T., D.J.M. and B.R. applied for a patent related to the virus-stamping approach. The remaining author declares no competing interests.

Additional information

Peer review information Nature Protocols thanks Martina Anton and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Schubert, R. et al. Nat. Biotechnol. 36, 81–88 (2018): https://doi.org/10.1038/nbt.4034

Wertz, A. et al. Science 349, 70–74 (2015): https://doi.org/10.1126/science.aab1687

Alsteens, D. et al. Nat. Nanotechnol. 12, 177–183 (2017): https://doi.org/10.1038/nnano.2016.228

Integrated supplementary information

Supplementary Fig. 1 Schematic of setup used for shielded virus stamping for experiments.

To maintain health of cells during the stamping procedure and allowing for glass capillary (pipette), optical and magnet access we built a custom chamber made of two concentric compartments31. The inner compartment is a glass-bottomed dish in which cells are cultured at 37 °C. The surrounding compartment is continuously filled via an inlet with humidified (<98% relative humidity) synthetic air (80% N2 and 20% O2) supplemented with 5% CO2. The top of the chamber is left open to access the cells by the glass capillary pipette and objective (top-down dipping objective). A 35 mm diameter opening of the outer chamber (chamber lid) allows optical access from the top. The angle between pipette and glass-bottom dish, which is usually ~ 45° can be adjusted according to the experimental needs. The bottom of the chamber can be optically assessed as well as indicated by the condenser. Depending on the angle of the pipette, the electromagnet (or permanent magnet) is aligned from below without blocking the light pathway. If experiments are to be conducted over extended time periods, the chambers can be covered with silicone sealant to enable gas exchange between compartments and to prevent evaporation of the cell-culture media.

Supplementary information

Supplementary Information

Supplementary Fig. 1

Reporting Summary

Supplementary Video 1

Nanoparticle mobility in the glass capillary pipette in the presence of a magnetic field.

Supplementary Video 2

Virus stamping of a cultured rat cortical neuron.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schubert, R., Herzog, S., Trenholm, S. et al. Magnetically guided virus stamping for the targeted infection of single cells or groups of cells. Nat Protoc 14, 3205–3219 (2019). https://doi.org/10.1038/s41596-019-0221-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-019-0221-z

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing