Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Using the tube test to measure social hierarchy in mice

An Author Correction to this article was published on 11 April 2019

This article has been updated

Abstract

Investigation of the neural mechanisms underlying social hierarchy requires a reliable and effective behavioral test. The tube test is a simple and robust behavioral assay that we recently validated as a reliable measure of social hierarchy in mice. The test was demonstrated to produce results largely consistent with the results seen when using other dominance measures, including the warm spot test, territory urine marking or the courtship ultrasound vocalization test. Here, we describe a step-by-step procedure to use the tube test to measure dominance within a cage of four male C57/BL6 mice as an example application. The procedure comprises three stages: habituation, training to pass through the tube, and the tube test itself. The social rank of each mouse is determined by the number of wins it gains when competing against the other three cagemates. A stable rank is derived when all mice maintain the same ranking for 4 consecutive days. The time required to acquire a stable rank usually varies from 4 to 14 d. An additional 5 d is required for habituation and training.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Tubes.
Fig. 2: An example showing the stability of tube test rank and time spent in the tube for different ranked pairings.
Fig. 3: Example of daily tube test ranking of one cage of four mice injected with AAV-CAG-ChR2(H134R) virus before and after acute dmPFC photostimulation of the rank-3 mouse at day 0.
Fig. 4: Comparison of the behavioral performances of photostimulated mice during light-off and light-on trials.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Change history

  • 11 April 2019

    In the version of this paper originally published, an affiliation for Zhengxiao Fan was omitted. In addition, the Reporting Summary incorrectly indicated that human research participants had been used in the study, instead of animal subjects. These errors have been corrected in the PDF and HTML versions of the protocol.

References

  1. Cole, B. J. Dominance hierarchies in leptothorax ants. Science 212, 83–84 (1981).

    Article  CAS  Google Scholar 

  2. Grosenick, L., Clement, T. S. & Fernald, R. D. Fish can infer social rank by observation alone. Nature 445, 429–432 (2007).

    Article  CAS  Google Scholar 

  3. Dunbar, R. I. & Dunbar, E. P. Dominance and reproductive success among female gelada baboons. Nature 266, 351–352 (1977).

    Article  CAS  Google Scholar 

  4. Qu, C., Ligneul, R., Van der Henst, J. B. & Dreher, J. C. An integrative interdisciplinary perspective on social dominance hierarchies. Trends Cogn. Sci. 21, 893–908 (2017).

    Article  Google Scholar 

  5. Bercovitch, F. B. & Clarke, A. S. Dominance rank, cortisol concentrations, and reproductive maturation in male rhesus macaques. Phys. Behav. 58, 215–221 (1995).

    Article  CAS  Google Scholar 

  6. Bernstein, I. S. Dominance—the baby and the bathwater. Behav. Brain Sci. 4, 419–429 (1981).

    Article  Google Scholar 

  7. Sapolsky, R. M. The influence of social hierarchy on primate health. Science 308, 648–652 (2005).

    Article  CAS  Google Scholar 

  8. Yeh, S. R., Fricke, R. A. & Edwards, D. H. The effect of social experience on serotonergic modulation of the escape circuit of crayfish. Science 271, 366–369 (1996).

    Article  CAS  Google Scholar 

  9. Russell, J. A. & Mehrabian, A. Evidence for a three-factory theory of emotions. J. Res. Pers. 11, 273–294 (1977).

  10. Bakker, I., van der Voordt, T., Vink, P. & de Boon, J. Pleasure, arousal, dominance: Mehrabian and Russell revisited. Curr. Psychol. 33, 405–421 (2014).

    Article  Google Scholar 

  11. Mehrabian, A. Pleasure-arousal-dominance: a general framework for describing and measuring individual differences in temperament. Curr. Psychol. 14, 261–292 (1966).

    Article  Google Scholar 

  12. Drews, C. The concept and definition of dominance in animal behaviour. Behaviour 125, 283–313 (1993).

    Article  Google Scholar 

  13. Hand, J. L. Resolution of social conflicts—dominance, egalitarianism, spheres of dominance, and game theory. Quart. Rev. Biol. 61, 201–220 (1986).

    Article  Google Scholar 

  14. Wang, F., Kessels, H. W. & Hu, H. The mouse that roared: neural mechanisms of social hierarchy. Trends Neurosci. 2014, 1–9 (2014).

    Google Scholar 

  15. Chou, M. Y. et al. Social conflict resolution regulated by two dorsal habenular subregions in zebrafish. Science 352, 87–90 (2016).

    Article  CAS  Google Scholar 

  16. Lindzey, G., Winston, H. & Manosevitz, M. Social dominance in inbred mouse strains. Nature 191, 474–476 (1961).

    Article  CAS  Google Scholar 

  17. Wang, F. et al. Bidirectional control of social hierarchy by synaptic efficacy in medial prefrontal cortex. Science 334, 693–697 (2011).

    Article  CAS  Google Scholar 

  18. Merlot, E., Moze, E., Bartolomucci, A., Dantzer, R. & Neveu, P. J. The rank assessed in a food competition test influences subsequent reactivity to immune and social challenges in mice. Brain Behav. Immun. 18, 468–475 (2004).

    Article  CAS  Google Scholar 

  19. Cordero, M. I. & Sandi, C. Stress amplifies memory for social hierarchy. Front. Neurosci. 1, 175–184 (2007).

    Article  Google Scholar 

  20. Lee, Y. P., Craig, J. V. & Dayton, A. D. The Social Rank Index as a measure of social status and its association with egg production in White Leghorn pullets. Appl. Anim. Ethol. 8, 377–390 (1982).

    Article  Google Scholar 

  21. Hessing, M. J. C. & Tielen, M. J. M. The effect of climatic environment and relocating and mixing on health status and productivity of pigs. Anim. Prod. 59, 131–139 (1994).

    Article  Google Scholar 

  22. Jupp, B. et al. Social dominance in rats: effects on cocaine self-administration, novelty reactivity and dopamine receptor binding and content in the striatum. Psychopharmacology 233, 579–589 (2016).

    Article  CAS  Google Scholar 

  23. Timmer, M. & Sandi, C. A role for glucocorticoids in the long-term establishment of a social hierarchy. Psychoneuroendocrinology 35, 1543–1552 (2010).

    Article  CAS  Google Scholar 

  24. Ujita, W., Kohyama-Koganeya, A., Endo, N., Saito, T. & Oyama, H. Mice lacking a functional NMDA receptor exhibit social subordination in a group-housed environment. FEBS J. 285, 188–196 (2018).

    Article  CAS  Google Scholar 

  25. Lucion, A. & Vogel, W. Effects of stress on defensive aggression and dominance in a water competition test. Integr. Physiol. Behav. Sci. 29, 415–422 (1994).

    Article  CAS  Google Scholar 

  26. Zhou, T. et al. History of winning remodels thalamo-PFC circuit to reinforce social dominance. Science 357, 162–168 (2017).

    Article  CAS  Google Scholar 

  27. Zhu, H. & Hu, H. L. Brain’s neural switch for social dominance in animals. Sci. China Life Sci. 61, 113–114 (2018).

    Article  Google Scholar 

  28. Ralls, K. Mammalian scent marking. Science 171, 443–449 (1971).

    Article  CAS  Google Scholar 

  29. Desjardins, C., Maruniak, J. A. & Bronson, F. H. Social rank in house mice—differentiation revealed by ultraviolet visualization of urinary marking patterns. Science 182, 939–941 (1973).

    Article  CAS  Google Scholar 

  30. Long, S. Y. Hair-nibbling and whisker-trimming as indicators of social hierarchy in mice. Anim. Behav. 20, 10–12 (1972).

    Article  CAS  Google Scholar 

  31. Kalueff, A. V., Minasyan, A., Keisala, T., Shah, Z. H. & Tuohimaa, P. Hair barbering in mice: implications for neurobehavioural research. Behav. Processes 71, 8–15 (2006).

    Article  CAS  Google Scholar 

  32. Strozik, E. & Festing, M. F. W. Whisker trimming in mice. Lab Anim. 15, 309–312 (1981).

    Article  CAS  Google Scholar 

  33. Hauschka, T. S. Whisker-eating mice. J. Hered. 43, 77–80 (1952).

    Article  Google Scholar 

  34. Dizinno, G., Whitney, G. & Nyby, J. Ultrasonic vocalizations by male mice (Mus musculus) to female sex-pheromone—experiential determinants. Behav. Biol. 22, 104–113 (1978).

    Article  Google Scholar 

  35. Nyby, J., Dizinno, G. A. & Whitney, G. Social status and ultrasonic vocalizations of male mice. Behav. Biol. 18, 285–289 (1976).

    Article  CAS  Google Scholar 

  36. Damato, F. R. Courtship ultrasonic vocalizations and social status in mice. Anim. Behav. 41, 875–885 (1991).

    Article  Google Scholar 

  37. Williamson, C. M., Romeo, R. D. & Curley, J. P. Dynamic changes in social dominance and mPOA GnRH expression in male mice following social opportunity. Hormones Behav. 87, 80–88 (2017).

    Article  CAS  Google Scholar 

  38. Crawley, J. N. Behavioral phenotyping of transgenic and knockout mice: experimental design and evaluation of general health, sensory functions, motor abilities, and specific behavioral tests. Brain Res. 835, 18–26 (1999).

    Article  CAS  Google Scholar 

  39. Garfield, A. S. et al. Distinct physiological and behavioural functions for parental alleles of imprinted Grb10. Nature 469, 534–538 (2011).

    Article  CAS  Google Scholar 

  40. Zhou, Y. et al. Mice with Shank3 mutations associated with ASD and schizophrenia display both shared and distinct defects. Neuron 89, 147–162 (2016).

    Article  CAS  Google Scholar 

  41. Hou, X. H. et al. Central control circuit for context-dependent micturition. Cell 167, 73–86.e12 (2016).

    Article  CAS  Google Scholar 

  42. Zhou, T., Sandi, C. & Hu, H. Advances in understanding neural mechanisms of social dominance. Curr. Opin. Neurobiol. 49, 99–107 (2018).

    Article  CAS  Google Scholar 

  43. Larrieu, T. et al. Hierarchical status predicts behavioral vulnerability and nucleus accumbens metabolic profile following chronic social defeat stress. Curr. Biol. 27, 2202–2210.e04 (2017).

    Article  CAS  Google Scholar 

  44. Park, M. J., Seo, B. A., Lee, B., Shin, H. S. & Kang, M. G. Stress-induced changes in social dominance are scaled by AMPA-type glutamate receptor phosphorylation in the medial prefrontal cortex. Sci. Rep. 8, 15008 (2018).

    Article  Google Scholar 

  45. lindzey, G., Manoseitz, M. & Winston, H. Social dominance in the mouse. Psychon. Sci. 5, 451–452 (1966).

    Article  Google Scholar 

  46. Baenninger, L. Social dominance orders in the rat: “spontaneous,” food, and water competition. J. Comp. Physiol. Psych. 71, 202–209 (1970).

    Article  Google Scholar 

  47. Miczek, K. A. & Barry, H.3rd. What does the tube test measure?. Behav. Biol. 13, 537–539 (1975).

    Article  CAS  Google Scholar 

  48. Miczek, K. A. & Barry, H. Delta-9-tetrahydrocannabinol and aggressive behavior in rats. Behav. Biol. 11, 261–267 (1974).

    Article  CAS  Google Scholar 

  49. Stagkourakis, S. et al. A neural network for intermale aggression to establish social hierarchy. Nat. Neurosci. 21, 834–842 (2018).

    Article  CAS  Google Scholar 

  50. Zhong, J. et al. Cyclic ADP-ribose and heat regulate oxytocin release via CD38 and TRPM2 in the hypothalamus during social or psychological stress in mice. Front. Neurosci. 10, 304 (2016).

    Article  Google Scholar 

  51. van den Berg, W. E., Lamballais, S. & Kushner, S. A. Sex-specific mechanism of social hierarchy in mice. Neuropsychopharmacology 40, 1364–1372 (2015).

    Article  Google Scholar 

  52. Anacker, A. M. J., Smith, M. L. & Ryabinin, A. E. Establishment of stable dominance interactions in prairie vole peers: relationships with alcohol drinking and activation of the paraventricular nucleus of the hypothalamus. Soc. Neurosci. 9, 484–494 (2014).

    Article  Google Scholar 

  53. Matthews, G. A. et al. Dorsal raphe dopamine neurons represent the experience of social isolation. Cell 164, 617–631 (2016).

    Article  CAS  Google Scholar 

  54. Kunkel, T. & Wang, H. B. Socially dominant mice in C57BL6 background show increased social motivation. Behav. Brain Res. 336, 173–176 (2018).

    Article  Google Scholar 

  55. Saxena, K. et al. Experiential contributions to social dominance in a rat model of fragile-X syndrome. Proc. Biol. Sci. 285, 20180294 (2018).

    Article  Google Scholar 

  56. Yang, C. R. et al. Enhanced aggressive behaviour in a mouse model of depression. Neurotox. Res. 27, 129–142 (2015).

    Article  CAS  Google Scholar 

  57. Huang, W. H. et al. Early adolescent Rai1 reactivation reverses transcriptional and social interaction deficits in a mouse model of Smith-Magenis syndrome. Proc. Natl. Acad. Sci. USA 115, 10744–10749 (2018).

    Article  CAS  Google Scholar 

  58. Cao, W. Y. et al. Role of early environmental enrichment on the social dominance tube test at adulthood in the rat. Psychopharmacology 234, 3321–3334 (2017).

    Article  CAS  Google Scholar 

  59. Tada, H. et al. Neonatal isolation augments social dominance by altering actin dynamics in the medial prefrontal cortex. Proc. Natl. Acad. Sci. USA 113, E7097–E7105 (2016).

    Article  CAS  Google Scholar 

  60. Arrant, A. E., Filiano, A. J., Warmus, B. A., Hall, A. M. & Roberson, E. D. Progranulin haploinsufficiency causes biphasic social dominance abnormalities in the tube test. Genes Brain Behav. 15, 588–603 (2016).

    Article  CAS  Google Scholar 

  61. Friard, O. & Gamba, M. BORIS: a free, versatile open-source event-logging software for video/audio coding and live observations. Methods Ecol. Evol. 7, 1325–1330 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Hu laboratory members for valuable discussions and advice. This study was supported by grants from the National Natural Science Foundation of China (31830032, 81527901, 91432108 and 31225010), the National Key R&D Program of China (2016YFA0501000) to H.H., the Non-profit Central Research Institute Fund of the Chinese Academy of Medical Sciences (2017PT31038 and 2018PT31041) and the 111 Project (B13026) to H.H.

Author information

Authors and Affiliations

Authors

Contributions

T.Z., H.Z. and H.H. designed the experimental strategy. Z.F., T.Z. and H.Z. optimized experimental procedures. Z.F., S.W., Y.W. and H.H. wrote the manuscript with input from all authors.

Corresponding author

Correspondence to Hailan Hu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Journal peer review information: Nature Protocols thanks Christian Broberger, Carmen Sandi and other (anonymous) reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Wang, F. et al. Science 334, 693–697 (2011): https://doi.org/10.1126/science.1209951

Zhou, T. et al. Science 357, 162–168 (2017): https://doi.org/10.1126/science.aak9726

Supplementary information

Reporting Summary

Supplementary Video 1

Training stage of the tube test.

Supplementary Video 2

Testing stage of the tube test.

Supplementary Video 3

Annotation of different behavior epochs during a tube test trial. Adapted with permission from Zhou et al.26.

Supplementary Video 4

Optogenetics in tube test. A tube with a 15-mm slit is used for optogenetics. After a stable tube test rank is determined, acute dmPFC photostimulation of a previously rank 3 mouse induces winning against a rank 1 mouse. Adapted with permission from Zhou et al.26.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Z., Zhu, H., Zhou, T. et al. Using the tube test to measure social hierarchy in mice. Nat Protoc 14, 819–831 (2019). https://doi.org/10.1038/s41596-018-0116-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-018-0116-4

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing