Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A primate temporal cortex–zona incerta pathway for novelty seeking

Abstract

Primates interact with the world by exploring visual objects; they seek opportunities to view novel objects even when these have no extrinsic reward value. How the brain controls this novelty seeking is unknown. Here we show that novelty seeking in monkeys is regulated by the zona incerta (ZI). As monkeys made eye movements to familiar objects to trigger an opportunity to view novel objects, many ZI neurons were preferentially activated by predictions of novel objects before the gaze shift. Low-intensity ZI stimulation facilitated gaze shifts, whereas ZI inactivation reduced novelty seeking. ZI-dependent novelty seeking was not regulated by neurons in the lateral habenula or by many dopamine neurons in the substantia nigra, traditionally associated with reward seeking. But the anterior ventral medial temporal cortex, an area important for object vision and memory, was a prominent source of novelty predictions. These data uncover a functional pathway in the primate brain that regulates novelty seeking.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Behavior and single neurons’ activities during novelty seeking.
Fig. 2: Novelty-seeking signals in the ZI.
Fig. 3: ZI is causally related to novelty seeking.
Fig. 4: The AVMTC is a prominent cortical source of novelty-prediction signals.

Similar content being viewed by others

Data availability

All data are available upon reasonable request from the corresponding author.

Code availability

All code is available upon request.

References

  1. Jaegle, A., Mehrpour, V. & Rust, N. Visual novelty, curiosity, and intrinsic reward in machine learning and the brain. Curr. Opin. Neurobiol. 58, 167–174 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Wang, T. & Mitchell, C. J. Attention and relative novelty in human perceptual learning. J. Exp. Psychol. Anim. Behav. Process. 37, 436–445 (2011).

    Article  PubMed  Google Scholar 

  3. Ghazizadeh, A., Griggs, W. & Hikosaka, O. Ecological origins of object salience: reward, uncertainty, aversiveness, and novelty. Front. Neurosci. 10, 378 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Loewenstein, G. The psychology of curiosity: a review and reinterpretation. Psychological Bull. 116, 75 (1994).

    Article  Google Scholar 

  5. Butler, R. A. Discrimination learning by rhesus monkeys to visual-exploration motivation. J. Comp. Physiological Psychol. 46, 95 (1953).

    Article  CAS  Google Scholar 

  6. Berlyne, D. E. Novelty and curiosity as determinants of exploratory behaviour. Br. J. Psychol. 41, 68 (1950).

    Google Scholar 

  7. Cohen, J. Y., Haesler, S., Vong, L., Lowell, B. B. & Uchida, N. Neuron-type-specific signals for reward and punishment in the ventral tegmental area. Nature 482, 85–88 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schultz, W., Dayan, P. & Montague, P. R. A neural substrate of prediction and reward. Science 275, 1593–1599 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Bromberg-Martin, E. S., Matsumoto, M. & Hikosaka, O. Dopamine in motivational control: rewarding, aversive, and alerting. Neuron 68, 815–834 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lisman, J. E. & Grace, A. A. The hippocampal–VTA loop: controlling the entry of information into long-term memory. Neuron 46, 703–713 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Tapper, A. R. & Molas, S. Midbrain circuits of novelty processing. Neurobiol. Learning Memory 176, 107323 (2020).

    Article  CAS  Google Scholar 

  12. Duszkiewicz, A. J., McNamara, C. G., Takeuchi, T. & Genzel, L. Novelty and dopaminergic modulation of memory persistence: a tale of two systems. Trends Neurosci. 42, 102–114 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kakade, S. & Dayan, P. Dopamine: generalization and bonuses. Neural Netw. 15, 549–559 (2002).

    Article  PubMed  Google Scholar 

  14. Bunzeck, N. & Düzel, E. Absolute coding of stimulus novelty in the human substantia nigra/VTA. Neuron 51, 369–379 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Wittmann, B. C., Bunzeck, N., Dolan, R. J. & Düzel, E. Anticipation of novelty recruits reward system and hippocampus while promoting recollection. NeuroImage 38, 194–202 (2007).

    Article  PubMed  Google Scholar 

  16. Lak, A., Stauffer, W. R. & Schultz, W. Dopamine prediction error responses integrate subjective value from different reward dimensions. Proc. Natl Acad. Sci. USA 111, 2343–2348 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schultz, W. Updating dopamine reward signals. Curr. Opin. Neurobiol. 23, 229–238 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lak, A., Stauffer, W. R. & Schultz, W. Dopamine neurons learn relative chosen value from probabilistic rewards. eLife 5, e18044 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Dabney, W. et al. A distributional code for value in dopamine-based reinforcement learning. Nature 577, 671–675 (2020).

  20. Bromberg-Martin, E. S. & Hikosaka, O. Midbrain dopamine neurons signal preference for advance information about upcoming rewards. Neuron 63, 119–126 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. McHenry, J. A. et al. Hormonal gain control of a medial preoptic area social reward circuit. Nat. Neurosci. 20, 449–458 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gunaydin, L. A. et al. Natural neural projection dynamics underlying social behavior. Cell 157, 1535–1551 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ranganath, C. & Rainer, G. Neural mechanisms for detecting and remembering novel events. Nat. Rev. Neurosci. 4, 193–202 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Menegas, W., Babayan, B. M., Uchida, N. & Watabe-Uchida, M. Opposite initialization to novel cues in dopamine signaling in ventral and posterior striatum in mice. eLife 6, e21886 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Huang, X. & Weng, J. Novelty and reinforcement learning in the value system of developmental robots. (2002).

  26. Oudeyer, P.-Y., Kaplan, F. & Hafner, V. V. Intrinsic motivation systems for autonomous mental development. IEEE Trans. Evolut. Comput. 11, 265–286 (2007).

    Article  Google Scholar 

  27. Gottlieb, J., Lopes, M. & Oudeyer, P.-Y. in Recent Developments in Neuroscience Research on Human Motivation 149–172 (Emerald, 2016).

  28. Lin, C. S., Nicolelis, M. A., Schneider, J. S. & Chapin, J. K. Jr. GABAergic pathway from zona incerta to neocortex: clarification. Science 251, 1162 (1991).

    Article  CAS  PubMed  Google Scholar 

  29. Lin, C. S., Nicolelis, M. A., Schneider, J. S. & Chapin, J. K. A major direct GABAergic pathway from zona incerta to neocortex. Science 248, 1553–1556 (1990).

    Article  CAS  PubMed  Google Scholar 

  30. Mitrofanis, J. Some certainty for the “zone of uncertainty”? Exploring the function of the zona incerta. Neuroscience 130, 1–15 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Wang, X., Chou, X.-l, Zhang, L. I. & Tao, H. W. Zona incerta: an integrative node for global behavioral modulation. Trends Neurosci. 43, 82–87 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Zhao, Z.-d et al. Zona incerta GABAergic neurons integrate prey-related sensory signals and induce an appetitive drive to promote hunting. Nat. Neurosci. 22, 921–932 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Tonelli, L. & Chiaraviglio, E. Enhancement of water intake in rats after lidocaine injection in the zona incerta. Brain Res. Bull. 31, 1–5 (1993).

    Article  CAS  PubMed  Google Scholar 

  34. Chometton, S. et al. The rostromedial zona incerta is involved in attentional processes while adjacent LHA responds to arousal: c-Fos and anatomical evidence. Brain Struct. Funct. 222, 2507–2525 (2017).

    Article  CAS  PubMed  Google Scholar 

  35. Ahmadlou, M. et al. A cell type-specific cortico-subcortical brain circuit for investigatory and novelty-seeking behavior. Science 372, 6543 (2021).

    Article  Google Scholar 

  36. May, P. J. & Basso, M. A. Connections between the zona incerta and superior colliculus in the monkey and squirrel. Brain Struct. Funct. 223, 371–390 (2018).

    Article  PubMed  Google Scholar 

  37. Krauzlis, R. J., Lovejoy, L. P. & Zénon, A. Superior colliculus and visual spatial attention. Annu. Rev. Neurosci. 36, https://doi.org/10.1146/annurev-neuro-062012-170249 (2013).

  38. Brown, M. W. & Aggleton, J. P. Recognition memory: what are the roles of the perirhinal cortex and hippocampus? Nat. Rev. Neurosci. 2, 51–61 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Murray, E. A. & Richmond, B. J. Role of perirhinal cortex in object perception, memory, and associations. Curr. Opin. Neurobiol. 11, 188–193 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Lauwereyns, J., Watanabe, K., Coe, B. & Hikosaka, O. A neural correlate of response bias in monkey caudate nucleus. Nature 418, 413–417 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Kim, H. F., Ghazizadeh, A. & Hikosaka, O. Separate groups of dopamine neurons innervate caudate head and tail encoding flexible and stable value memories. Front. Neuroanat. 8, 120 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Jutras, M. J. & Buffalo, E. A. Recognition memory signals in the macaque hippocampus. Proc. Natl Acad. Sci. USA 107, 401–406 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Zhang, K., Chen, C. D. & Monosov, I. E. Novelty, salience, and surprise timing are signaled by neurons in the basal forebrain. Curr. Biol. 29, 134–142.e133 (2019).

    Article  CAS  PubMed  Google Scholar 

  44. Tachibana, Y. & Hikosaka, O. The primate ventral pallidum encodes expected reward value and regulates motor action. Neuron 76, 826–837 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Matsumoto, M. & Hikosaka, O. Two types of dopamine neuron distinctly convey positive and negative motivational signals. Nature 459, 837–841 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hollerman, J. R. & Schultz, W. Dopamine neurons report an error in the temporal prediction of reward during learning. Nat. Neurosci. 1, 304–309 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Joshua, M., Adler, A., Mitelman, R., Vaadia, E. & Bergman, H. Midbrain dopaminergic neurons and striatal cholinergic interneurons encode the difference between reward and aversive events at different epochs of probabilistic classical conditioning trials. J. Neurosci. 28, 11673–11684 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Eshel, N. et al. Arithmetic and local circuitry underlying dopamine prediction errors. Nature 525, 243–246 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nakahara, H., Itoh, H., Kawagoe, R., Takikawa, Y. & Hikosaka, O. Dopamine neurons can represent context-dependent prediction error. Neuron 41, 269–280 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Babayan, B. M., Uchida, N. & Gershman, S. J. Belief state representation in the dopamine system. Nat. Commun. 9, 1891 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Fiorillo, C. D., Newsome, W. T. & Schultz, W. The temporal precision of reward prediction in dopamine neurons. Nat. Neurosci. 11, 966–973 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Matsumoto, M. & Hikosaka, O. Lateral habenula as a source of negative reward signals in dopamine neurons. Nature 447, 1111–1115 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Matsumoto, M. & Hikosaka, O. Negative motivational control of saccadic eye movement by the lateral habenula. Prog. Brain Res. 171, 399–402 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Matsumoto, M. & Hikosaka, O. Representation of negative motivational value in the primate lateral habenula. Nat. Neurosci. 12, 77–84 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Salas, R., Baldwin, P., De Biasi, M. & Montague, R. BOLD responses to negative reward prediction errors in human habenula. Front. Hum. Neurosci. 4, 36 (2010).

    PubMed  PubMed Central  Google Scholar 

  56. Bromberg-Martin, E. S. & Hikosaka, O. Lateral habenula neurons signal errors in the prediction of reward information. Nat. Neurosci. 14, 1209–1216 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. White, J. K. et al. A neural network for information seeking. Nat. Commun. 10, 5168 (2019).

  58. Xiang, J.-Z. & Brown, M. Differential neuronal encoding of novelty, familiarity and recency in regions of the anterior temporal lobe. Neuropharmacology 37, 657–676 (1998).

    Article  CAS  PubMed  Google Scholar 

  59. Haskins, A. L., Yonelinas, A. P., Quamme, J. R. & Ranganath, C. Perirhinal cortex supports encoding and familiarity-based recognition of novel associations. Neuron 59, 554–560 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Tamura, K. et al. Conversion of object identity to object-general semantic value in the primate temporal cortex. Science 357, 687–692 (2017).

    Article  CAS  PubMed  Google Scholar 

  61. Furtak, S. C., Wei, S. M., Agster, K. L. & Burwell, R. D. Functional neuroanatomy of the parahippocampal region in the rat: the perirhinal and postrhinal cortices. Hippocampus 17, 709–722 (2007).

    Article  PubMed  Google Scholar 

  62. Tomás Pereira, I., Agster, K. L. & Burwell, R. D. Subcortical connections of the perirhinal, postrhinal, and entorhinal cortices of the rat. I. Afferents. Hippocampus 26, 1189–1212 (2016).

    Article  PubMed  Google Scholar 

  63. Agster, K. L., Tomás Pereira, I., Saddoris, M. P. & Burwell, R. D. Subcortical connections of the perirhinal, postrhinal, and entorhinal cortices of the rat. II. Efferents. Hippocampus 26, 1213–1230 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sommer, M. A. & Wurtz, R. H. Composition and topographic organization of signals sent from the frontal eye field to the superior colliculus. J. Neurophysiol. 83, 1979–2001 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Schall, J. D. The neural selection and control of saccades by the frontal eye field. Philos. Trans. R. Soc. Lond. B 357, 1073–1082 (2002).

    Article  Google Scholar 

  66. Trageser, J. C. et al. State-dependent gating of sensory inputs by zona incerta. J. Neurophysiol. 96, 1456–1463 (2006).

    Article  PubMed  Google Scholar 

  67. Barthó, P. et al. Cortical control of zona incerta. J. Neurosci. 27, 1670–1681 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  68. de Git, K. C. G. et al. Zona incerta neurons projecting to the ventral tegmental area promote action initiation towards feeding. J. Physiol. 599, 709–724 (2021).

    Article  PubMed  Google Scholar 

  69. Ma, T. P. Saccade-related omnivectoral pause neurons in the primate zona incerta. Neuroreport 7, 2713–2716 (1996).

    Article  CAS  PubMed  Google Scholar 

  70. Kita, T., Osten, P. & Kita, H. Rat subthalamic nucleus and zona incerta share extensively overlapped representations of cortical functional territories. J. Comp. Neurol. 522, 4043–4056 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Watson, C., Lind, C. R. & Thomas, M. G. The anatomy of the caudal zona incerta in rodents and primates. J. Anat. 224, 95–107 (2014).

    Article  PubMed  Google Scholar 

  72. Ljungberg, T., Apicella, P. & Schultz, W. Responses of monkey dopamine neurons during learning of behavioral reactions. J. Neurophysiol. 67, 145–163 (1992).

    Article  CAS  PubMed  Google Scholar 

  73. Morrens, J., Aydin, Ç., van Rensburg, A. J., Rabell, J. E. & Haesler, S. Cue-evoked dopamine promotes conditioned responding during learning. Neuron 106, 142–153.e147 (2020).

    Article  CAS  PubMed  Google Scholar 

  74. Costa, V. D., Tran, V. L., Turchi, J. & Averbeck, B. B. Dopamine modulates novelty seeking behavior during decision making. Behav. Neurosci. 128, 556–566 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Watabe-Uchida, M., Zhu, L., Ogawa, S. K., Vamanrao, A. & Uchida, N. Whole-brain mapping of direct inputs to midbrain dopamine neurons. Neuron 74, 858–873 (2012).

    Article  CAS  PubMed  Google Scholar 

  76. Daye, P. M., Monosov, I. E., Hikosaka, O., Leopold, D. A. & Optican, L. M. pyElectrode: an open-source tool using structural MRI for electrode positioning and neuron mapping. J. Neurosci. Methods 213, 123–131 (2013).

    Article  PubMed  Google Scholar 

  77. Ledbetter, M. N., Chen, D. C. & Monosov, I. E. Multiple mechanisms for processing reward uncertainty in the primate basal forebrain. J. Neurosci. 36, https://doi.org/10.1523/JNEUROSCI.1123-16.2016 (2016).

  78. Dotson, N. M., Hoffman, S. J., Goodell, B. & Gray, C. M. A large-scale semi-chronic microdrive recording system for non-human primates. Neuron 96, 769–782. e762 (2017).

    Article  CAS  PubMed  Google Scholar 

  79. Dotson, N. M., Hoffman, S. J., Goodell, B. & Gray, C. M. Feature-based visual short-term memory is widely distributed and hierarchically organized. Neuron 99, 215–226. e214 (2018).

    Article  CAS  PubMed  Google Scholar 

  80. Monosov, I. E., Leopold, D. A. & Hikosaka, O. Neurons in the primate medial basal forebrain signal combined information about reward uncertainty, value, and punishment anticipation. J. Neurosci. 35, 7443–7459 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yamamoto, S., Monosov, I. E., Yasuda, M. & Hikosaka, O. What and where information in the caudate tail guides saccades to visual objects. J. Neurosci. 32, 11005–11016 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Monosov, I. E. & Hikosaka, O. Regionally distinct processing of rewards and punishments by the primate ventromedial prefrontal cortex. J. Neurosci. 32, 10318–10330 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Mao, D. et al. Spatial representations in macaque hippocampal formation. bioRxiv, 2020.2010.2003.324848, https://doi.org/10.1101/2020.10.03.324848 (2020).

  84. Markov, N. T. et al. A weighted and directed interareal connectivity matrix for macaque cerebral cortex. Cereb. Cortex 24, 17–36 (2014).

    Article  CAS  PubMed  Google Scholar 

  85. Ogasawara, T., Nejime, M., Takada, M. & Matsumoto, M. Primate nigrostriatal dopamine system regulates saccadic response inhibition. Neuron 100, 1513–1526. e1514 (2018).

    Article  CAS  PubMed  Google Scholar 

  86. Ungless, M. A. & Grace, A. A. Are you or aren’t you? Challenges associated with physiologically identifying dopamine neurons. Trends Neurosci. 35, 422–430 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ongur, D. & Price, J. L. The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb. Cortex 10, 206–219 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Carmichael, S. & Price, J. L. Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys. J. Comp. Neurol. 363, 615–641 (1995).

    Article  CAS  PubMed  Google Scholar 

  89. Carmichael, S. T., Clugnet, M. C. & Price, J. L. Central olfactory connections in the macaque monkey. J. Comp. Neurol. 346, 403–434 (1994).

    Article  CAS  PubMed  Google Scholar 

  90. Kondo, H., Saleem, K. S. & Price, J. L. Differential connections of the temporal pole with the orbital and medial prefrontal networks in macaque monkeys. J. Comp. Neurol. 465, 499–523 (2003).

    Article  PubMed  Google Scholar 

  91. Fisher, R. A. Breakthroughs in Statistics 66–70 (Springer, 1992).

  92. Rolls, E. T. & Xiang, J.-Z. Reward-spatial view representations and learning in the primate hippocampus. J. Neurosci. 25, 6167–6174 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Monosov, I. E., Trageser, J. C. & Thompson, K. G. Measurements of simultaneously recorded spiking activity and local field potentials suggest that spatial selection emerges in the frontal eye field. Neuron 57, 614–625 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Monosov, I. E., Sheinberg, D. L. & Thompson, K. G. Paired neuron recordings in the prefrontal and inferotemporal cortices reveal that spatial selection precedes object identification during visual search. Proc. Natl Acad. Sci. USA 107, 13105–13110 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Salzman, C. D. & Newsome, W. T. Neural mechanisms for forming a perceptual decision. Science 264, 231–237 (1994).

    Article  CAS  PubMed  Google Scholar 

  96. Ballesta, S., Shi, W., Conen, K. E. & Padoa-Schioppa, C. Values encoded in orbitofrontal cortex are causally related to economic choices. Nature 588, 450–453 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. McIntyre, C. C. & Grill, W. M. Selective microstimulation of central nervous system neurons. Ann. Biomed. Eng. 28, 219–233 (2000).

    Article  CAS  PubMed  Google Scholar 

  98. McIntyre, C. C. & Grill, W. M. Extracellular stimulation of central neurons: influence of stimulus waveform and frequency on neuronal output. J. Neurophysiol. 88, 1592–1604 (2002).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Institute of Mental Health under award numbers R01MH110594 and R01MH116937 to IEM, and by the McKnight Foundation award to IEM. The optimization of array technology was supported by the Defense Advanced Research Projects Agency (DARPA) Biological Technologies Office (BTO) ElectRx program under the auspices of D. Weber through the CMO grant/contract no. HR0011-16-2-0022. We are grateful to K. Kocher for great animal care and animal training, and to A. Kepecs, E. S. Bromberg-Martin and C. Padoa-Schioppa for giving us valuable suggestions to improve this manuscript. We are also grateful to B. Goodell and C. M. Gray for technical and scientific assistance with high channel-count recording arrays, to D. W. Moran for assistance with perfusion, and to FD Neuro Technologies for assistance with tissue processing.

Author information

Authors and Affiliations

Authors

Contributions

T.O., I.E.M. and Y.F. performed the neuronal recordings. T.O., F.S., K.Z. and J.P. analyzed the data. I.E.M. wrote the manuscript. T.O., J.P., Y.F. and I.E.M. discussed and revised the manuscript. A.J. analyzed the anatomical data. I.E.M. guided and conceptualized the research.

Corresponding authors

Correspondence to Takaya Ogasawara or Ilya E. Monosov.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Neuroscience thanks Mitsuko Watabe-Uchida and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogasawara, T., Sogukpinar, F., Zhang, K. et al. A primate temporal cortex–zona incerta pathway for novelty seeking. Nat Neurosci 25, 50–60 (2022). https://doi.org/10.1038/s41593-021-00950-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-021-00950-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing