Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Promises and limitations of human intracranial electroencephalography

Abstract

Intracranial electroencephalography (iEEG), also known as electrocorticography when using subdural grid electrodes or stereotactic EEG when using depth electrodes, is blossoming in various fields of human neuroscience. In this article, we highlight the potentials of iEEG in exploring functions of the human brain while also considering its limitations. The iEEG signal provides anatomically precise information about the selective engagement of neuronal populations at the millimeter scale and the temporal dynamics of their engagement at the millisecond scale. If several nodes of a given network are monitored simultaneously with implanted electrodes, the iEEG signals can also reveal information about functional interactions within and across networks during different stages of neural computation. As such, human iEEG can complement other methods of neuroscience beyond simply replicating what is already known, or can be known, from noninvasive lines of research in humans or from invasive recordings in nonhuman mammalian brains.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Two methods of intracranial EEG: electrocorticography and stereo-EEG.
Fig. 2: Recent surge in the number of iEEG publications.
Fig. 3: Simultaneous recording with broad coverage for tracking the spatiotemporal profiles of activity of populations of neurons during a particular cognitive task.

Similar content being viewed by others

References

  1. Caton, R. The electric currents of the brain. BMJ 2, 278 (1875).

    Google Scholar 

  2. Beck, A. Die Bestimmung der Localisation der Gehirn- und Ruckenmarkfunctionen vermittelst der electrischen Erscheinungen. Centralbl. Physiol. 4, 473–476 (1890).

    Google Scholar 

  3. Berger, H. Öber das Elektroenkephalogramm des Menschen. Arch. Psychiatr. Nervenkr. 87, 527–570 (1929).

    Article  Google Scholar 

  4. Kwan, P., Schachter, S. C. & Brodie, M. J. Drug-resistant epilepsy. N. Engl. J. Med. 365, 919–926 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Engel, J. Jr. Surgery for seizures. N. Engl. J. Med. 334, 647–652 (1996).

    Article  PubMed  Google Scholar 

  6. Semah, F. et al. Is the underlying cause of epilepsy a major prognostic factor for recurrence? Neurology 51, 1256–1262 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Engel, A. K., Moll, C. K., Fried, I. & Ojemann, G. A. Invasive recordings from the human brain: clinical insights and beyond. Nat. Rev. Neurosci. 6, 35–47 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Mukamel, R. & Fried, I. Human intracranial recordings and cognitive neuroscience. Annu. Rev. Psychol. 63, 511–537 (2012).

    Article  PubMed  Google Scholar 

  9. Parvizi, J. Corticocentric myopia: old bias in new cognitive sciences. Trends Cogn. Sci. 13, 354–359 (2009).

    Article  PubMed  Google Scholar 

  10. Saalmann, Y. B., Pinsk, M. A., Wang, L., Li, X. & Kastner, S. The pulvinar regulates information transmission between cortical areas based on attention demands. Science 337, 753–756 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wimmer, R. D. et al. Thalamic control of sensory selection in divided attention. Nature 526, 705–709 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Miller, K. J., Sorensen, L. B., Ojemann, J. G. & den Nijs, M. Power-law scaling in the brain surface electric potential. PLOS Comput. Biol. 5, e1000609 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Miller, K. J. Broadband spectral change: evidence for a macroscale correlate of population firing rate? J. Neurosci. 30, 6477–6479 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Winawer, J. et al. Asynchronous broadband signals are the principal source of the BOLD response in human visual cortex. Curr. Biol. 23, 1145–1153 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jiruska, P. et al. Update on the mechanisms and roles of high-frequency oscillations in seizures and epileptic disorders. Epilepsia 58, 1330–1339 (2017).

    Article  PubMed  Google Scholar 

  16. Schevon, C. A. et al. Spatial characterization of interictal high frequency oscillations in epileptic neocortex. Brain 132, 3047–3059 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ray, S., Crone, N. E., Niebur, E., Franaszczuk, P. J. & Hsiao, S. S. Neural correlates of high-gamma oscillations (60–200 Hz) in macaque local field potentials and their potential implications in electrocorticography. J. Neurosci. 28, 11526–11536 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ray, S. & Maunsell, J. H. Different origins of gamma rhythm and high-gamma activity in macaque visual cortex. PLoS Biol. 9, e1000610 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kreiman, G. et al. Object selectivity of local field potentials and spikes in the macaque inferior temporal cortex. Neuron 49, 433–445 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Liu, J. & Newsome, W. T. Local field potential in cortical area MT: stimulus tuning and behavioral correlations. J. Neurosci. 26, 7779–7790 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Mukamel, R. et al. Coupling between neuronal firing, field potentials, and FMRI in human auditory cortex. Science 309, 951–954 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Katzner, S. et al. Local origin of field potentials in visual cortex. Neuron 61, 35–41 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Engel, A. K., König, P., Gray, C. M. & Singer, W. Stimulus-dependent neuronal oscillations in cat visual cortex: inter-columnar interaction as determined by cross-correlation analysis. Eur. J. Neurosci. 2, 588–606 (1990).

    Article  PubMed  Google Scholar 

  24. Park, S. H. et al. Functional subpopulations of neurons in a macaque face patch revealed by single-unit fMRI mapping. Neuron 95, 971–981.e975 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. Logothetis, N. K., Pauls, J., Augath, M., Trinath, T. & Oeltermann, A. Neurophysiological investigation of the basis of the fMRI signal. Nature 412, 150–157 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Nir, Y. et al. Coupling between neuronal firing rate, gamma LFP, and BOLD fMRI is related to interneuronal correlations. Curr. Biol. 17, 1275–1285 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Manning, J. R., Jacobs, J., Fried, I. & Kahana, M. J. Broadband shifts in local field potential power spectra are correlated with single-neuron spiking in humans. J. Neurosci. 29, 13613–13620 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Niessing, J. et al. Hemodynamic signals correlate tightly with synchronized gamma oscillations. Science 309, 948–951 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Flinker, A., Chang, E. F., Barbaro, N. M., Berger, M. S. & Knight, R. T. Sub-centimeter language organization in the human temporal lobe. Brain Lang. 117, 103–109 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Mesgarani, N., Cheung, C., Johnson, K. & Chang, E. F. Phonetic feature encoding in human superior temporal gyrus. Science 343, 1006–1010 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hermes, D. et al. Neurophysiologic correlates of fMRI in human motor cortex. Hum. Brain Mapp. 33, 1689–1699 (2012).

    Article  PubMed  Google Scholar 

  32. Miller, K. J. et al. Spectral changes in cortical surface potentials during motor movement. J. Neurosci. 27, 2424–2432 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Foster, B. L., Dastjerdi, M. & Parvizi, J. Neural populations in human posteromedial cortex display opposing responses during memory and numerical processing. Proc. Natl Acad. Sci. USA 109, 15514–15519 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Buzsaki, G. Rhythms of the Brain. (Oxford University Press, Oxford, 2006).

    Book  Google Scholar 

  35. VanRullen, R. Perceptual cycles. Trends Cogn. Sci. 20, 723–735 (2016).

    Article  PubMed  Google Scholar 

  36. Canolty, R. T. & Knight, R. T. The functional role of cross-frequency coupling. Trends Cogn. Sci. 14, 506–515 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Schroeder, C. E. & Lakatos, P. Low-frequency neuronal oscillations as instruments of sensory selection. Trends Neurosci. 32, 9–18 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Voytek, B. et al. Oscillatory dynamics coordinating human frontal networks in support of goal maintenance. Nat. Neurosci. 18, 1318–1324 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Szczepanski, S. M. et al. Dynamic changes in phase-amplitude coupling facilitate spatial attention control in fronto-parietal cortex. PLoS Biol. 12, e1001936 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Daitch, A. L. et al. Mapping human temporal and parietal neuronal population activity and functional coupling during mathematical cognition. Proc. Natl Acad. Sci. USA 113, E7277–E7286 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tang, H. et al. Spatiotemporal dynamics underlying object completion in human ventral visual cortex. Neuron 83, 736–748 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Raichle, M. E. Neuroscience. The brain’s dark energy. Science 314, 1249–1250 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Parvizi, J. et al. Electrical stimulation of human fusiform face-selective regions distorts face perception. J. Neurosci. 32, 14915–14920 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ball, T., Kern, M., Mutschler, I., Aertsen, A. & Schulze-Bonhage, A. Signal quality of simultaneously recorded invasive and non-invasive EEG. Neuroimage 46, 708–716 (2009).

    Article  PubMed  Google Scholar 

  45. Chao, Z. C., Nagasaka, Y. & Fujii, N. Long-term asynchronous decoding of arm motion using electrocorticographic signals in monkeys. Front. Neuroeng. 3, 3 (2010).

    PubMed  PubMed Central  Google Scholar 

  46. Pasley, B. N. et al. Reconstructing speech from human auditory cortex. PLoS Biol. 10, e1001251 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rutishauser, U., Ross, I. B., Mamelak, A. N. & Schuman, E. M. Human memory strength is predicted by theta-frequency phase-locking of single neurons. Nature 464, 903–907 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Jacobs, J., Kahana, M. J., Ekstrom, A. D. & Fried, I. Brain oscillations control timing of single-neuron activity in humans. J. Neurosci. 27, 3839–3844 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Zanos, S., Zanos, T. P., Marmarelis, V. Z., Ojemann, G. A. & Fetz, E. E. Relationships between spike-free local field potentials and spike timing in human temporal cortex. J. Neurophysiol. 107, 1808–1821 (2012).

    Article  PubMed  Google Scholar 

  50. Svoboda, E., McKinnon, M. C. & Levine, B. The functional neuroanatomy of autobiographical memory: a meta-analysis. Neuropsychologia 44, 2189–2208 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Nir, Y., Dinstein, I., Malach, R. & Heeger, D. J. BOLD and spiking activity. Nat. Neurosci. 11, 523–524 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Keller, C. J. et al. Neurophysiological investigation of spontaneous correlated and anticorrelated fluctuations of the BOLD signal. J. Neurosci. 33, 6333–6342 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Foster, B. L., Rangarajan, V., Shirer, W. R. & Parvizi, J. Intrinsic and task-dependent coupling of neuronal population activity in human parietal cortex. Neuron 86, 578–590 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Desmurget, M. et al. Movement intention after parietal cortex stimulation in humans. Science 324, 811–813 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Parvizi, J., Rangarajan, V., Shirer, W. R., Desai, N. & Greicius, M. D. The will to persevere induced by electrical stimulation of the human cingulate gyrus. Neuron 80, 1359–1367 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Fried, I., Wilson, C. L., MacDonald, K. A. & Behnke, E. J. Electric current stimulates laughter. Nature 391, 650 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. Blanke, O., Ortigue, S., Landis, T. & Seeck, M. Stimulating illusory own-body perceptions. Nature 419, 269–270 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Rangarajan, V. et al. Electrical stimulation of the left and right human fusiform gyrus causes different effects in conscious face perception. J. Neurosci. 34, 12828–12836 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Selimbeyoglu, A. & Parvizi, J. Electrical stimulation of the human brain: perceptual and behavioral phenomena reported in the old and new literature. Front. Hum. Neurosci. 4, 46 (2010).

    PubMed  PubMed Central  Google Scholar 

  60. Morrell, M. J. Responsive cortical stimulation for the treatment of medically intractable partial epilepsy. Neurology 77, 1295–1304 (2011).

    Article  PubMed  Google Scholar 

  61. Rosin, B. et al. Closed-loop deep brain stimulation is superior in ameliorating parkinsonism. Neuron 72, 370–384 (2011).

    Article  CAS  PubMed  Google Scholar 

  62. Widge, A. S. et al. Treating refractory mental illness with closed-loop brain stimulation: Progress towards a patient-specific transdiagnostic approach. Exp. Neurol. 287, 461–472 (2017).

    Article  PubMed  Google Scholar 

  63. Pesaran, B., Musallam, S. & Andersen, R. A. Cognitive neural prosthetics. Curr. Biol. 16, R77–R80 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Cogan, G. B. et al. Sensory-motor transformations for speech occur bilaterally. Nature 507, 94–98 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Beauchamp, M. S., Sun, P., Baum, S. H., Tolias, A. S. & Yoshor, D. Electrocorticography links human temporoparietal junction to visual perception. Nat. Neurosci. 15, 957–959 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tsao, D. Y., Moeller, S. & Freiwald, W. A. Comparing face patch systems in macaques and humans. Proc. Natl Acad. Sci. USA 105, 19514–19519 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pinsk, M. A. et al. Neural representations of faces and body parts in macaque and human cortex: a comparative FMRI study. J. Neurophysiol. 101, 2581–2600 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Halgren, E. et al. Laminar profile of spontaneous and evoked theta: Rhythmic modulation of cortical processing during word integration. Neuropsychologia 76, 108–124 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Cash, S. S. et al. The human K-complex represents an isolated cortical down-state. Science 324, 1084–1087 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kiani, R. et al. Natural grouping of neural responses reveals spatially segregated clusters in prearcuate cortex. Neuron 85, 1359–1373 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Buffalo, E. A., Fries, P., Landman, R., Buschman, T. J. & Desimone, R. Laminar differences in gamma and alpha coherence in the ventral stream. Proc. Natl Acad. Sci. USA 108, 11262–11267 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bastos, A. M. et al. Visual areas exert feedforward and feedback influences through distinct frequency channels. Neuron 85, 390–401 (2015).

    Article  CAS  PubMed  Google Scholar 

  73. Chang, E. F. Towards large-scale, human-based, mesoscopic neurotechnologies. Neuron 86, 68–78 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Litt, B. Engineering the next generation of brain scientists. Neuron 86, 16–20 (2015).

    Article  CAS  PubMed  Google Scholar 

  75. Khodagholy, D. et al. NeuroGrid: recording action potentials from the surface of the brain. Nat. Neurosci. 18, 310–315 (2015).

    Article  CAS  PubMed  Google Scholar 

  76. Lilly, J. C., Hughes, J. R., Alvord, E. C. Jr & Galkin, T. W. Brief, noninjurious electric waveform for stimulation of the brain. Science 121, 468–469 (1955).

    Article  CAS  PubMed  Google Scholar 

  77. Foutz, T. J. & McIntyre, C. C. Evaluation of novel stimulus waveforms for deep brain stimulation. J. Neural Eng. 7, 066008 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Famm, K., Litt, B., Tracey, K. J., Boyden, E. S. & Slaoui, M. Drug discovery: a jump-start for electroceuticals. Nature 496, 159–161 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Litt, B. Evaluating devices for treating epilepsy. Epilepsia 44 (Suppl. 7), 30–37 (2003).

  80. Schalk, G. & Leuthardt, E. C. Brain-computer interfaces using electrocorticographic signals. IEEE Rev. Biomed. Eng. 4, 140–154 (2011).

    Article  PubMed  Google Scholar 

  81. Andersen, R. A., Burdick, J. W., Musallam, S., Pesaran, B. & Cham, J. G. Cognitive neural prosthetics. Trends Cogn. Sci. 8, 486–493 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Bassett, D. S. & Sporns, O. Network neuroscience. Nat. Neurosci. 20, 353–364 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Power, J. D. et al. Functional network organization of the human brain. Neuron 72, 665–678 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kriegeskorte, N. et al. Matching categorical object representations in inferior temporal cortex of man and monkey. Neuron 60, 1126–1141 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Shum, J. et al. A brain area for visual numerals. J. Neurosci. 33, 6709–6715 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Penfield, W. & Boldrey, E. Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60, 389–443 (1937).

    Article  Google Scholar 

  87. Milner, B., Squire, L. R. & Kandel, E. R. Cognitive neuroscience and the study of memory. Neuron 20, 445–468 (1998).

    Article  CAS  PubMed  Google Scholar 

  88. Gazzaniga, M. S. Review of the split brain. J. Neurol. 209, 75–79 (1975).

    Article  CAS  PubMed  Google Scholar 

  89. Elger, C. E., Helmstaedter, C. & Kurthen, M. Chronic epilepsy and cognition. Lancet Neurol. 3, 663–672 (2004).

    Article  PubMed  Google Scholar 

  90. Motamedi, G. & Meador, K. Epilepsy and cognition. Epilepsy Behav. 4 (Suppl. 2), S25–S38 (2003).

  91. Meador, K. J. Networks, cognition, and epilepsy. Neurology 77, 930–931 (2011).

    Article  PubMed  Google Scholar 

  92. Holmes, M. D. & Tucker, D. M. Identifying the epileptic network. Front. Neurol. 4, 84 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Holmes, G. L. & Lenck-Santini, P. P. Role of interictal epileptiform abnormalities in cognitive impairment. Epilepsy Behav. 8, 504–515 (2006).

    Article  PubMed  Google Scholar 

  94. Aldenkamp, A. P. & Arends, J. Effects of epileptiform EEG discharges on cognitive function: is the concept of “transient cognitive impairment” still valid? Epilepsy Behav. 5 (Suppl. 1), S25–S34 (2004).

  95. Binnie, C. D. Cognitive impairment during epileptiform discharges: is it ever justifiable to treat the EEG? Lancet Neurol. 2, 725–730 (2003).

    Article  PubMed  Google Scholar 

  96. Jones-Gotman, M. Localization of lesions by neuropsychological testing. Epilepsia 32 (Suppl. 5), S41–S52 (1991).

  97. Glennon, J. M. et al. Interictal epileptiform discharges have an independent association with cognitive impairment in children with lesional epilepsy. Epilepsia 57, 1436–1442 (2016).

    Article  PubMed  Google Scholar 

  98. Loring, D. W., Kapur, R., Meador, K. J. & Morrell, M. J. Differential neuropsychological outcomes following targeted responsive neurostimulation for partial-onset epilepsy. Epilepsia 56, 1836–1844 (2015).

    Article  PubMed  Google Scholar 

  99. Groppe, D. M. et al. iELVis: An open source MATLAB toolbox for localizing and visualizing human intracranial electrode data. J. Neurosci. Methods 281, 40–48 (2017).

    Article  CAS  PubMed  Google Scholar 

  100. Hermes, D., Miller, K. J., Noordmans, H. J., Vansteensel, M. J. & Ramsey, N. F. Automated electrocorticographic electrode localization on individually rendered brain surfaces. J. Neurosci. Methods 185, 293–298 (2010).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the following colleagues for their time discussing the promises and limitations of iEEG with us: G. Buszáki, S. Dehaene, J. DiCarlo, E. Halgren, R. Kiani, M. Kahana, R. Knight, C. Koch, N. Logotethis, R. Malach, M.-B. Moser, B. Newsome, A. Nieder, U. Rutishauser and A. Wagner. We gratefully acknowledge funding support from the US National Institute of Health (1R01MH109954-01 to J.P.; 2RO1MH064043-12, 5RO1EY017699-09, Silvio O. Conte Center 21560-685 to S.K. and J.P.), the US National Science Foundation (BCS1358907 to JP; BCS-1328270 to S.K.) and the James S. McDonnell Foundation to S.K.

Author information

Authors and Affiliations

Authors

Contributions

J.P. and S.K. designed the form and content of the manuscript; J.P. wrote the first draft of the manuscript and J.P. and S.K. edited several revisions of it.

Corresponding author

Correspondence to Josef Parvizi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parvizi, J., Kastner, S. Promises and limitations of human intracranial electroencephalography. Nat Neurosci 21, 474–483 (2018). https://doi.org/10.1038/s41593-018-0108-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-018-0108-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing