Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pig-to-human heart xenotransplantation in two recently deceased human recipients

Abstract

Genetically modified xenografts are one of the most promising solutions to the discrepancy between the numbers of available human organs for transplantation and potential recipients. To date, a porcine heart has been implanted into only one human recipient. Here, using 10-gene-edited pigs, we transplanted porcine hearts into two brain-dead human recipients and monitored xenograft function, hemodynamics and systemic responses over the course of 66 hours. Although both xenografts demonstrated excellent cardiac function immediately after transplantation and continued to function for the duration of the study, cardiac function declined postoperatively in one case, attributed to a size mismatch between the donor pig and the recipient. For both hearts, we confirmed transgene expression and found no evidence of cellular or antibody-mediated rejection, as assessed using histology, flow cytometry and a cytotoxic crossmatch assay. Moreover, we found no evidence of zoonotic transmission from the donor pigs to the human recipients. While substantial additional work will be needed to advance this technology to human trials, these results indicate that pig-to-human heart xenotransplantation can be performed successfully without hyperacute rejection or zoonosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Study timelines and cardiac and systemic hemodynamic measurements.
Fig. 2: Xenograft histology and immunohistochemistry.
Fig. 3: Infectious diseases surveillance in donor pigs and xenograft heart recipients.
Fig. 4: Anti-pig IgM and IgG detection by flow cytometry and complement-dependent cytotoxicity assays.
Fig. 5: Cytokine responses and inflammatory markers in xenograft heart recipients.

Data availability

The data that support the findings of this study, including de-identified decedent data, are available on request from the corresponding authors, N.M. and R.A.M. The data are not publicly available due to containing information that could compromise the privacy of research subjects. Data related to the genetics of the 10GE donor pigs are the proprietary information of United Therapeutics Corporation, PBC, and therefore are restricted. Source data are provided with this paper.

References

  1. Garry, D. J., Weiner, J. I., Greising, S. M., Garry, M. G. & Sachs, D. H. Mechanisms and strategies to promote cardiac xenotransplantation. J. Mol. Cell. Cardiol. 172, 109–119 (2022).

    Article  CAS  PubMed  Google Scholar 

  2. Luepker, R. V. Epidemiology of heart failure. In Congestive Heart Failure and Cardiac Transplantation (eds. Garry, D. J., Wilson, R. F. & Vlodaver, Z.) 93–102 (Springer International Publishing, 2017). https://doi.org/10.1007/978-3-319-44577-9_6

  3. Heidenreich, P. A. et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure: executive summary: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 145, e876–e894 (2022).

    PubMed  Google Scholar 

  4. Virani, S. S. et al. Heart disease and stroke statistics – 2020 update: a report from the American Heart Association. Circulation 141, e139–e596 (2020).

    Article  PubMed  Google Scholar 

  5. Organ Procurement and Transplantation Network. National data. https://optn.transplant.hrsa.gov/data/view-data-reports/national-data/

  6. Reichart, B. et al. Pathways to clinical cardiac xenotransplantation. Transplantation 105, 1930–1943 (2021).

    Article  PubMed  Google Scholar 

  7. Platt, J. L., Cascalho, M. & Piedrahita, J. A. Xenotransplantation: progress along paths uncertain from models to application. ILAR J. 59, 286–308 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Llore, N. P., Bruestle, K. A. & Griesemer, A. Xenotransplantation tolerance: applications for recent advances in modified swine. Curr. Opin. Organ Transplant. 23, 642–648 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hryhorowicz, M., Zeyland, J., Słomski, R. & Lipiński, D. Genetically modified pigs as organ donors for xenotransplantation. Mol. Biotechnol. 59, 435–444 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Montgomery, R. A. et al. Results of two cases of pig-to-human kidney xenotransplantation. N. Engl. J. Med. 386, 1889–1898 (2022).

    Article  CAS  PubMed  Google Scholar 

  11. Montgomery, R. A., Mehta, S. A., Parent, B. & Griesemer, A. Next steps for the xenotransplantation of pig organs into humans. Nat. Med. 28, 1533–1536 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Sykes, M. Developing pig-to-human organ transplants. Science 378, 135–136 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Griffith, B. P. et al. Genetically modified porcine-to-human cardiac xenotransplantation. N. Engl. J. Med. 387, 35–44 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Goradia, S., Sardaneh, A. A., Narayan, S. W., Penm, J. & Patanwala, A. E. Vasopressor dose equivalence: a scoping review and suggested formula. J. Crit. Care 61, 233–240 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. Kagan, C. et al. Abstract 12072: EKG appearance and evolution of baseline EKG-characteristics in the worldwide first genetically modified porcine-to-human xenotransplant (‘pig heart-in-human body’). Circulation 146(Suppl. 1), A12072 (2022).

    Google Scholar 

  16. Paradis, K. et al. Search for cross-species transmission of porcine endogenous retrovirus in patients treated with living pig tissue. The XEN 111 Study Group. Science 285, 1236–1241 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Denner, J. Porcine endogenous retroviruses (PERVs) and xenotransplantation: screening for transmission in several clinical trials and in experimental models using non-human primates. Ann. Transplant. 8, 39–48 (2003).

    CAS  PubMed  Google Scholar 

  18. Nishitai, R. et al. Absence of PERV infection in baboons after transgenic porcine liver perfusion. J. Surg. Res. 124, 45–51 (2005).

    Article  PubMed  Google Scholar 

  19. Heneine, W. et al. No evidence of infection with porcine endogenous retrovirus in recipients of porcine islet-cell xenografts. Lancet 352, 695–699 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Valdes-Gonzalez, R., Dorantes, L. M., Bracho-Blanchet, E., Rodríguez-Ventura, A. & White, D. J. G. No evidence of porcine endogenous retrovirus in patients with type 1 diabetes after long-term porcine islet xenotransplantation. J. Med. Virol. 82, 331–334 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Di Nicuolo, G. et al. Long-term absence of porcine endogenous retrovirus infection in chronically immunosuppressed patients after treatment with the porcine cell-based Academic Medical Center bioartificial liver. Xenotransplantation 17, 431–439 (2010).

    Article  PubMed  Google Scholar 

  22. Längin, M. et al. Consistent success in life-supporting porcine cardiac xenotransplantation. Nature 564, 430–433 (2018).

    Article  PubMed  Google Scholar 

  23. Reichart, B. et al. Pig-to-non-human primate heart transplantation: the final step toward clinical xenotransplantation? J. Heart Lung Transplant. 39, 751–757 (2020).

    Article  PubMed  Google Scholar 

  24. Goh, B. K., Chedid, M. F., Gloor, J. M., Raghavaiah, S. & Stegall, M. D. The impact of terminal complement blockade on the efficacy of induction with polyclonal rabbit antithymocyte globulin in living donor renal allografts. Transpl. Immunol. 27, 95–100 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Mohiuddin, M. M. et al. Chimeric 2C10R4 anti-CD40 antibody therapy is critical for long-term survival of GTKO.hCD46.hTBM pig-to-primate cardiac xenograft. Nat. Commun. 7, 11138 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pierson, R. N. et al. Progress toward cardiac xenotransplantation. Circulation 142, 1389–1398 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Griesemer, A. D. et al. Upregulation of CD59: potential mechanism of accommodation in a large animal model. Transplantation 87, 1308–1317 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kroshus, T. J. et al. Expression of human CD59 in transgenic pig organs enhances organ survival in an ex vivo xenogeneic perfusion model. Transplantation 61, 1513–1521 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Wang, X. et al. CD47 blockade reduces ischemia/reperfusion injury in donation after cardiac death rat kidney transplantation. Am. J. Transplant. 18, 843–854 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. Mohiuddin, M. M. et al. Progressive genetic modifications of porcine cardiac xenografts extend survival to 9 months. Xenotransplantation 29, e12744 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Byrne, G. W. & McGregor, C. G. Cardiac Xenotransplantation: Progress and Challenges. Curr Opin Organ Transplant 17, 148–154 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mehta, S. A., Saharia, K. K., Nellore, A., Blumberg, E. A. & Fishman, J. A. Infection and clinical xenotransplantation: guidance from the Infectious Disease Community of Practice of the American Society of Transplantation. Am. J. Transplant. 23, 309–315 (2023).

    Article  PubMed  Google Scholar 

  33. Caplan, A. Bioethics of organ transplantation. Cold Spring Harb. Perspect. Med. 4, a015685 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Parent, B. et al. The ethics of testing and research of manufactured organs on brain-dead/recently deceased subjects. J. Med. Ethics 46, 199–204 (2020).

    Article  PubMed  Google Scholar 

  35. Walker, R. L., Juengst, E. T., Whipple, W. & Davis, A. M. Genomic research with the newly dead: a crossroads for ethics and policy. J. Law Med. Ethics 42, 220–231 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Pentz, R. D. et al. Ethics guidelines for research with the recently dead. Nat. Med. 11, 1145–1149 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Yasko, L. L., Wicclair, M. & DeVita, M. A. Committee for Oversight of Research Involving the Dead (CORID): insights from the first year. Camb. Q. Healthc. Ethics 13, 327–337 (2004).

    Article  PubMed  Google Scholar 

  38. Rautaharju, P. M., Surawicz, B. & Gettes, L. S. AHA/ACCF/HRS recommendations for the standardization and interpretation of the electrocardiogram. Circulation 119, e241–e250 (2009).

    Article  PubMed  Google Scholar 

  39. Kossmann, C. E. The normal electrocardiogram. Circulation 8, 920–936 (1953).

    Article  CAS  PubMed  Google Scholar 

  40. Clauss, S. et al. Animal models of arrhythmia: classic electrophysiology to genetically modified large animals. Nat. Rev. Cardiol. 16, 457–475 (2019).

    Article  PubMed  Google Scholar 

  41. Berry, G. J. et al. The 2013 International Society for Heart and Lung Transplantation Working Formulation for the standardization of nomenclature in the pathologic diagnosis of antibody-mediated rejection in heart transplantation. J. Heart Lung Transplant. 32, 1147–1162 (2013).

    Article  PubMed  Google Scholar 

  42. Denner, J. Can antiretroviral drugs be used to treat porcine endogenous retrovirus (PERV) infection after xenotransplantation? Viruses 9, E213 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank the families of the decedents for their generous donation to science. The authors also thank M. Rothblatt, CEO of United Therapeutics Corporation, PBC, and United Therapeutics Corporation, PBC, for funding support. For significant contributions to the performance of this study the authors thank I. Ifraimova, H. Datta, K. Cantor, E. Finegan, F. Matteo, M. VanName, K. Abinnante, R. Vania-Velasco, L. Herbold, N. Portello, R. Venick, S. Mompoint, P. Donohue, K. Allen, G. Boulton, J. Pavone, A. Eutsay, B. Sullivan, S. Castiglioni, A. Eremiev, M. E. Gumina, N. Ostberg, N. Uzoigwe, C. Deterville, P. Hotchkis, R. Rothstein, C. Hickson, S. Bennett, P. Alcide, M. Reeb, K. Silik, T. Hsiung, T. Beaulieu, F. Hill, N. Albright, A. Merrifield, M. Peng, M. McBridge, J. Ciolko, E. Duggan, D. Wolbrom, J. Beagle, A. Dandro, T. K. Adams, L. Sorrells, R. Herati, K. Tokoro and T. Katsarou (both supported by NCI NIH EDRN U01 CA214195), the Boeke Laboratory Team, NYU Langone Health Nursing Leadership, NYU Transplant Research Team, and the NYU Langone Health Center for Biospecimen Research and Development (CBRD), Histology and Immunohistochemistry Laboratory (RRID:SCR_018304), supported in part by the Laura and Isaac Perlmutter Cancer Center Support Grant (NIH/NCI P30CA016087). The authors also appreciate B. Parent, JD, Director of Transplant Ethics and Policy Research at NYU Grossman School of Medicine, for his contributions.

Author information

Authors and Affiliations

Authors

Contributions

Concept or study design: N.M., J.M.S., K.K., J.I.K., M.M., E.P.W., N.L., G.L.P., P.M.S., A.R., J.N., V.S.T., D.L.S., L.B., J.D.B., H.P., B.K., D.A., M.L., A.G., S.A.M., D.E.S., R.A.M. Acquisition of data: N.M., J.M.S., K.K., J.I.K., N.N., M.M., E.P.W., L.K., L.J., N.L., G.L.P., P.M.S., A.R., D.B., T.S., B.S.K., M.D., R.I.G., S.T.H., J.C., J.N., T.J., N.M.A., V.S.T., S.B., I.S.J., B.P., H.K., M.K., J.M., L.S., L.B., J.D.B., H.P., C.G., B.K., D.A., A.G., D.E.S., R.A.M. Analysis: J.M.S., K.K., J.I.K., N.N., M.M., L.K., D.B., M.K., J.M., L.S., J.D.B., H.P., C.G., B.K., A.G., R.A.M. Interpretation of data: N.M., J.M.S., K.K., J.I.K., N.N., M.M., L.K., A.R., D.B., T.S., B.S.K., M.D., R.I.G., N.M.A., V.S.T., D.L.S., M.K., J.M., L.S., J.D.B., H.P., C.G., B.K., D.A., M.L., A.G., S.A.M., D.E.S., R.A.M. Drafting the work or revising it critically for important intellectual content: N.M., J.M.S., K.K., J.I.K., N.N., M.M., E.P.W., A.R., D.B., D.L.S., J.D.B., H.P., B.K., D.A., M.L., A.G., S.A.M., D.E.S., R.A.M.

Corresponding authors

Correspondence to Nader Moazami or Robert A. Montgomery.

Ethics declarations

Competing interests

The authors declare that research support and funding was provided by Lung Biotechnology, a wholly owned subsidiary of the United Therapeutics Corporation, PBC. M.K., J.M., L.S., L.B., D.A. are employed by Revivicor, Inc. M.L. is employed by United Therapeutics Corporation, PBC. R.A.M. is on scientific advisory boards for eGenesis, Sanofi, Regeneron, CareDx and Hansa Biopharma, is a consultant to Recombinetics, reports consulting fees from Hansa Medical, Regeneron, ThermoFisher Scientific, Genentech, CareDx, One Lambda, ITB Med, Sanofi and PPD Development, and reports grant support from Hansa Biopharma, all unrelated to the present work. R.A.M. also reports grant support from United Therapeutics Corporation, PBC. D.L.S. is a consultant to AstraZeneca, Novavax, Novartis, CareDx, Transmedics, CSL Behring, Jazz Pharmaceuticals, Veloxis, Mallinckrodt and ThermoFisher Scientific, reports honoraria from Sanofi, AstraZeneca, Optum, CareDx and Novartis, and grant support from the National Institutes of Health, all unrelated to the present work. J.D.B. is a founder and director of CDI Labs, Inc., a founder of and consultant to Neochromosome, Inc., a founder, SAB member of and consultant to ReOpen Diagnostics, LLC, and serves or served on the Scientific Advisory Board of the following: Logomix, Inc., Modern Meadow, Inc., Rome Therapeutics, Inc., Sample6, Inc., Sangamo, Inc., Tessera Therapeutics, Inc. and the Wyss Institute, all unrelated to the present work. K.K. is a consultant to ProMedCARE Solutions, Inc., unrelated to the present work. All other authors have no competing interests.

Peer review

Peer review information

Nature Medicine thanks Hidetaka Hara, Joren Madsen and Muhammad Mohiuddin for their contribution to the peer review of this work. Primary Handling Editor: Michael Basson, in collaboration with the Nature Medicine team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Additional laboratory assessments of xenograft hearts.

Clinical lab testing of serial blood samples collected from each recipient throughout the duration of the study: a, white blood cells; b, platelets; c, hemoglobin; d, international normalized ratio (INR); e, high-sensitivity troponin I; f, B-type natriuretic peptide (BNP); g, aspartate aminotransferase (AST), alanine aminotransferase (ALT); h, alkaline phosphatase (ALP), total bilirubin (Tb).

Extended Data Fig. 2 Transesophageal echocardiograms (TEE) of xenograft hearts 1 and 2.

a, TEE depicting xenograft heart 1 at the time of transplant. b, TEE depicting xenograft heart 2 at the time of transplant. Images depict a four-chamber view of the heart obtained from a deep transgastric (xenograft heart 1) and mid-esophageal (xenograft heart 2) TEE window. LA, left atrium; LV, left ventricle; RA, right atrium; RV, right ventricle.

Extended Data Fig. 3 12-lead electrocardiograms (EKG) of xenograft hearts 1 and 2.

a, 12-lead EKG performed on POD 2 on xenograft heart 1. Image shows a junctional rhythm without p waves, QRS duration of 116 milliseconds (ms), QT interval of 482 ms, and QTc interval of 555 ms. b, 12-lead EKG performed on POD 2 on xenograft heart 2. Image shows normal sinus rhythm with PR interval of 128 ms, QRS duration of 74 ms, QT interval of 364 ms, and QTc interval of 492 ms.

Extended Data Fig. 4 qRT-PCR and qPCR analysis of porcine organs.

RNA and DNA were extracted from the indicated organs from donor animals corresponding to recipient 1 (top) and 2 (bottom) and the qRT-PCR was performed on RNA (a, c) and qPCR was performed on DNA (b, d).

Extended Data Fig. 5 Analysis for peripheral blood porcine macrochimerism.

Peripheral blood was examined for the presence of pig macrochimerism at 4 time points for each recipient. Samples were stained with antibodies that bind to pig CD45 and human MHC 1 and analyzed using flow cytometry. a, Analysis of pig cells in a control pig sample. b, Analysis of sample from xenograft heart recipient 2 at 24 hours after xenotransplantation. c, Flow cytometry gating strategy.

Extended Data Table 1 Echocardiographic measurements of xenograft hearts
Extended Data Table 2 Electrophysiological measurements
Extended Data Table 3 Baseline zoonosis

Supplementary information

Supplementary Information

Supplementary Fig. 1, Supplementary Tables 1–3, Supplementary Video Fig. Legends 1 and 2

Reporting Summary

Supplementary Video 1

TEE videos of xenograft heart 1. Serial TEEs of the first decedent from sequential postoperative days (PODs). Imaging shows a four-chamber view of the heart obtained from a deep transgastric TEE window. LA, left atrium; LV, left ventricle; RA, right atrium; RV, right ventricle.

Supplementary Video 2

TEE videos of xenograft heart 2. Serial TEEs of the second decedent from sequential postoperative days (PODs). Imaging shows a four-chamber view of the heart obtained from a mid-esophageal TEE window. LA, left atrium; LV, left ventricle; RA, right atrium; RV, right ventricle.

Source data

Source Data Fig. 3

Unprocessed gels for Fig. 3a (recipient 1 PERV) and 3b (recipient 2 PERV)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moazami, N., Stern, J.M., Khalil, K. et al. Pig-to-human heart xenotransplantation in two recently deceased human recipients. Nat Med 29, 1989–1997 (2023). https://doi.org/10.1038/s41591-023-02471-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41591-023-02471-9

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research