Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Single-cell transcriptomics identifies a distinct luminal progenitor cell type in distal prostate invagination tips

Abstract

The identification of prostate stem/progenitor cells and characterization of the prostate epithelial cell lineage hierarchy are critical for understanding prostate cancer initiation. Here, we characterized 35,129 cells from mouse prostates, and identified a unique luminal cell type (termed type C luminal cell (Luminal-C)) marked by Tacstd2, Ck4 and Psca expression. Luminal-C cells located at the distal prostate invagination tips (termed Dist-Luminal-C) exhibited greater capacity for organoid formation in vitro and prostate epithelial duct regeneration in vivo. Lineage tracing of Luminal-C cells indicated that Dist-Luminal-C cells reconstituted distal prostate luminal lineages through self-renewal and differentiation. Deletion of Pten in Dist-Luminal-C cells resulted in prostatic intraepithelial neoplasia. We further characterized 11,374 human prostate cells and confirmed the existence of h-Luminal-C cells. Our study provides insights into the prostate lineage hierarchy, identifies Dist-Luminal-C cells as the luminal progenitor cell population in invagination tips and suggests one of the potential cellular origins of prostate cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Single-cell transcriptomic survey of mouse prostate cells.
Fig. 2: Localization and characterization of Luminal-C cells.
Fig. 3: Lineage tracing of Ck4-expressing Dist-Luminal-C cells.
Fig. 4: Lineage tracing of Ck4-expressing Prox-Luminal-C cells.
Fig. 5: Prostate hyperplasia and PIN derived from the Luminal-C cell population.
Fig. 6: Luminal-C cells in the normal human prostate.
Fig. 7: Schematic diagram of the self-renewal of Dist-Luminal-C cells and their role as prostate cancer-initiating cells.

Similar content being viewed by others

Data availability

All requests for raw and analyzed data and materials should be directed to the corresponding authors. Data and materials that can be shared will be released via a material transfer agreement. All raw sequencing data created in this study have been uploaded to the National Omics Data Encyclopedia (NODE; https://www.biosino.org/node/index) with the accession number OEP000825.

Code availability

The custom code used is available at GitHub (https://github.com/LinLi-0909/Single-cell-analysis).

References

  1. Shen, M. M. & Abate-Shen, C. Molecular genetics of prostate cancer: new prospects for old challenges. Genes Dev. 24, 1967–2000 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Li, J. J. & Shen, M. M. Prostate stem cells and cancer stem cells. Cold Spring Harb. Perspect. Med. 9, a030395 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Xin, L., Ide, H., Kim, Y., Dubey, P. & Witte, O. N. In vivo regeneration of murine prostate from dissociated cell populations of postnatal epithelia and urogenital sinus mesenchyme. Proc. Natl Acad. Sci. USA 100 (Suppl. 1), 11896–11903 (2003).

  4. Burger, P. E. et al. Sca-1 expression identifies stem cells in the proximal region of prostatic ducts with high capacity to reconstitute prostatic tissue. Proc. Natl Acad. Sci. USA 102, 7180–7185 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Goldstein, A. S., Huang, J., Guo, C., Garraway, I. P. & Witte, O. N. Identification of a cell of origin for human prostate cancer. Science 329, 568–571 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Leong, K. G., Wang, B. E., Johnson, L. & Gao, W. Q. Generation of a prostate from a single adult stem cell. Nature 456, 804–808 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Xin, L., Lawson, D. A. & Witte, O. N. The Sca-1 cell surface marker enriches for a prostate-regenerating cell subpopulation that can initiate prostate tumorigenesis. Proc. Natl Acad. Sci. USA 102, 6942–6947 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gao, D. et al. Organoid cultures derived from patients with advanced prostate cancer. Cell 159, 176–187 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Karthaus, W. R. et al. Identification of multipotent luminal progenitor cells in human prostate organoid cultures. Cell 159, 163–175 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chua, C. W. et al. Single luminal epithelial progenitors can generate prostate organoids in culture. Nat. Cell Biol. 16(951-61), 1–4 (2014).

    Google Scholar 

  11. Wang, W., Gao, J., Man, X. H., Li, Z. S. & Gong, Y. F. Significance of DNA methyltransferase-1 and histone deacetylase-1 in pancreatic cancer. Oncol. Rep. 21, 1439–1447 (2009).

    CAS  PubMed  Google Scholar 

  12. Choi, N., Zhang, B., Zhang, L., Ittmann, M. & Xin, L. Adult murine prostate basal and luminal cells are self-sustained lineages that can both serve as targets for prostate cancer initiation. Cancer Cell 21, 253–265 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ousset, M. et al. Multipotent and unipotent progenitors contribute to prostate postnatal development. Nat. Cell Biol. 14, 1131–1138 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Wang, Z. A. et al. Lineage analysis of basal epithelial cells reveals their unexpected plasticity and supports a cell-of-origin model for prostate cancer heterogeneity. Nat. Cell Biol. 15, 274–283 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lu, T. L. et al. Conditionally ablated Pten in prostate basal cells promotes basal-to-luminal differentiation and causes invasive prostate cancer in mice. Am. J. Pathol. 182, 975–991 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Yoo, Y. A. et al. Bmi1 marks distinct castration-resistant luminal progenitor cells competent for prostate regeneration and tumour initiation. Nat. Commun. 7, 12943 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kwon, O. J., Zhang, L. & Xin, L. Stem cell antigen-1 identifies a distinct androgen-independent murine prostatic luminal cell lineage with bipotent potential. Stem Cells 34, 191–202 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Wei, X. et al. Spatially restricted stromal Wnt signaling restrains prostate epithelial progenitor growth through direct and indirect mechanisms. Cell Stem Cell 24, 753–768.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pignon, J. C. et al. Cell kinetic studies fail to identify sequentially proliferating progenitors as the major source of epithelial renewal in the adult murine prostate. PLoS ONE 10, e0128489 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Lawson, D. A. et al. Basal epithelial stem cells are efficient targets for prostate cancer initiation. Proc. Natl Acad. Sci. USA 107, 2610–2615 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang, Z. A., Toivanen, R., Bergren, S. K., Chambon, P. & Shen, M. M. Luminal cells are favored as the cell of origin for prostate cancer. Cell Rep. 8, 1339–1346 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zheng, G. X. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Svensson, V. et al. Power analysis of single-cell RNA-sequencing experiments. Nat. Methods 14, 381–387 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gao, D. et al. A Tmprss2-CreERT2 knock-in mouse model for cancer genetic studies on prostate and colon. PLoS ONE 11, e0161084 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Reiter, R. E. et al. Prostate stem cell antigen: a cell surface marker overexpressed in prostate cancer. Proc. Natl Acad. Sci. USA 95, 1735–1740 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Qiu, X. et al. Reversed graph embedding resolves complex single-cell trajectories. Nat. Methods 14, 979–982 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Williams, J. M. & Daniel, C. W. Mammary ductal elongation: differentiation of myoepithelium and basal lamina during branching morphogenesis. Dev. Biol. 97, 274–290 (1983).

    Article  CAS  PubMed  Google Scholar 

  29. Giraddi, R. R. et al. Stem and progenitor cell division kinetics during postnatal mouse mammary gland development. Nat. Commun. 6, 8487 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Scheele, C. L. et al. Identity and dynamics of mammary stem cells during branching morphogenesis. Nature 542, 313–317 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Barker, N., van de Wetering, M. & Clevers, H. The intestinal stem cell. Genes Dev. 22, 1856–1864 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ramalho-Santos, M., Yoon, S., Matsuzaki, Y., Mulligan, R. C. & Melton, D. A. ‘Stemness’: transcriptional profiling of embryonic and adult stem cells. Science 298, 597–600 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Madisen, L. et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 13, 133–140 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Srinivas, S. et al. Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev. Biol. 1, 4 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Uhlén, M. et al. Tissue-based map of the human proteome. Science 347, 1260419 (2015).

    Article  PubMed  CAS  Google Scholar 

  36. Henry, G. H. et al. A cellular anatomy of the normal adult human prostate and prostatic urethra. Cell Rep. 25, 3530–3542.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jia, Z. et al. Diagnosis of prostate cancer using differentially expressed genes in stroma. Cancer Res 71, 2476–2487 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Barros-Silva, J. D. et al. Single-cell analysis identifies LY6D as a marker linking castration-resistant prostate luminal cells to prostate progenitors and cancer. Cell Rep. 25, 3504–3518.e6 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lawson, D. A. & Witte, O. N. Stem cells in prostate cancer initiation and progression. J. Clin. Invest 117, 2044–2050 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Taylor, R. A. et al. Formation of human prostate tissue from embryonic stem cells. Nat. Methods 3, 179–181 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Rane, J. K. et al. Conserved two-step regulatory mechanism of human epithelial differentiation. Stem Cell Rep. 2, 180–188 (2014).

    Article  CAS  Google Scholar 

  42. Wang, Z. A. & Shen, M. M. Revisiting the concept of cancer stem cells in prostate cancer. Oncogene 30, 1261–1271 (2011).

    Article  PubMed  CAS  Google Scholar 

  43. Crowell, P. D. et al. Expansion of luminal progenitor cells in the aging mouse and human prostate. Cell Rep. 28, 1499–1510.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Trotman, L. C. et al. Pten dose dictates cancer progression in the prostate. PLoS Biol. 1, E59 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Drost, J. et al. Organoid culture systems for prostate epithelial and cancer tissue. Nat. Protoc. 11, 347–358 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Goldstein, A. S. et al. Purification and direct transformation of epithelial progenitor cells from primary human prostate. Nat. Protoc. 6, 656–667 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hu, Y. & Smyth, G. K. ELDA: extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays. J. Immunol. Methods 347, 70–78 (2009).

  48. Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33, 495–502 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  52. McGinnis, C. S., Murrow, L. M. & Gartner, Z. J. DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst. 8, 329–337.e4 (2019).

  53. Baglama, J. & Reichel, L. Augmented implicitly restarted Lanczos bidiagonalization methods. SIAM J. Sci. Comput. 27, 19–42 (2005).

    Article  Google Scholar 

  54. van der Maaten, L. Accelerating t-SNE using tree-based algorithms. J. Mach. Learn. Res. 15, 3221–3245 (2014).

    Google Scholar 

  55. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Shi, J., Teschendorff, A. E., Chen, W., Chen, L. & Li, T. Quantifying Waddington’s epigenetic landscape: a comparison of single-cell potency measures. Brief. Bioinform. (2018).

  57. Reimand, J. et al. g:Profiler—a web server for functional interpretation of gene lists (2016 update). Nucleic Acids Res. 44, W83–89 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Teschendorff, A. E. & Enver, T. Single-cell entropy for accurate estimation of differentiation potency from a cell’s transcriptome. Nat. Commun. 8, 15599 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhou, Y. et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 10, 1523 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge J. Huang (Duke University) and A. M. De Marzo (Johns Hopkins University) for histopathological data consultation, B. Wu and G. Chen for animal husbandry and W. Bian for technical help at the SIBCB Core Facility. We thank the Genome Tagging Project (GTP) Center, Shanghai Institute of Biochemistry and Cell Biology, CAS for technical support. This study was supported by grants from the National Key Research and Development Program of China (grant no. 2017YFA0505500), the Strategic Priority Research Program of the Chinese Academy of Sciences (grant nos. XDA16020905 and XDB19000000), the National Natural Science Foundation of China (grant nos. 81830054, 81772723, 61403363 and 11901272), the State Key Project for Infectious Diseases (grant no. 2018ZX10302207-004-002), the Shanghai Municipal Science and Technology Major Project (grant no. 2017SHZDZX01) and the US National Cancer Institute (grant nos. R01CA208100, R01CA193837, P50CA092629 and P30CA008748).

Author information

Authors and Affiliations

Authors

Contributions

D.G. conceived and designed the experimental approach. W.G. performed most experiments. L.L., H.D. and L.C. contributed to the computational and statistical analyses. J.H., Z.L., M.H., X.X., X.Z., F.L., Y.G.L., R.A., Y.Z., Y.W., H.W. and C.L. helped with the experiments and provided technical support. D.G., L.C. and Y.C. prepared the manuscript as the senior authors.

Corresponding authors

Correspondence to Yu Chen, Luonan Chen or Dong Gao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Decoding of the identity of cell types within the main clusters.

a, T-SNE maps show the expression levels of epithelial cell marker Epcam and known luminal cell marker genes (Ck8, Ck18, Ar, EYFP) across 11 clusters. Red circles indicate all the luminal cell clusters. b-k, T-SNE maps show the expression levels of marker genes across 11 clusters. Red circles indicate the Luminal-A cluster (n = 2,773 cells) (b), Luminal-B cluster (n = 2,233 cells) (c), Luminal-C cluster (n = 232 cells) (d), Neuroendocrine cell cluster (n = 4 cells) (e), Basal cluster (n = 747 cells) (f), Seminal Vesicle cluster (n = 406 cells) (g), Stromal cluster (n = 1,208 cells) (h), Macrophage cluster (n = 660 cells) (i), Lymphocyte cluster (n = 114 cells) (j), Endothelial cluster (n = 168 cells) (k). t-SNE map shows cells that are colored by the log-scale normalized read count of marker genes.

Extended Data Fig. 2 Lobe specific distribution of luminal clusters.

a, Visualization of clustering of 13,632 single cells from freshly dissociated AP, VP and DLP of WT mice at age of 10 weeks, based on the expression of known marker genes by t-SNE. b, Visualization the lobe distribution patterns of different cell clusters (n = 13,632 cells). c, Bar graph shows the percentage of the three luminal cell lineages in AP, VP and DLP. d-i, T-SNE maps show the expression levels of marker genes across 7 clusters. Black circle indicate the Luminal clusters (n = 9,295 cells) (d), Luminal-A cluster (n = 4,874 cells) (e), Luminal-B cluster (n = 4,059 cells) (f), Luminal-C cluster (n = 362 cells) (g), Basal cluster (n = 836 cells) (h), Stromal cluster (n = 2,864 cells) (i). T-SNE map shows cells that are colored by the log-scale normalized read count of marker genes.

Extended Data Fig. 3 Location of Luminal-A, Luminal-B and Luminal-C cells in different prostate lobes.

a,b, Immunofluorescence of Hoxb13 (a) and Nkx3.1 (b) in WT mouse anterior prostate (AP) (red circles), dorsal-lateral prostate (DLP) (green circle), ventral prostate (VP) (purple circle), proximal prostate (yellow circle), and urethra (light blue circle). c, immunofluorescence of Tacstd2 in the whole prostate of T2Y mouse. White circles indicate all the proximal prostate; green circle indicate the urethra. d,e,f,g Co-immunofluorescence of Hoxb13, Nkx3.1 and Tacstd2 in AP (d), DLP (e), VP (f) and proximal prostate (g) of WT prostate. 3 independent mice were used for each experiment. Scale bars, 50 μm(d-g).

Extended Data Fig. 4 Transcriptomic analysis of Dist-Luminal-C cells, Dist-Luminal-C cells, Tacstd2-negative luminal cells and basal cells.

a,b, FACS plots, gating strategy of the prostate basal cells (a), distal (b, upper panel) and proximal (b, lower panel) prostate epithelial cells. c, Heatmap for analyzing the gene signatures of Dist-Luminal-C cells, Dist-Luminal-C cells, Tacstd-negative luminal cells and basal cells (log2(fold change) >=log2(1.5), p-value < =0.01,edgeR). Each row represents one gene, while each column represents one sample. (The expression values of the gene are row z-score log (FPKM + 1)). d, Heatmap shows the gene signatures of Dist-Luminal-C cells, Dist-Luminal-C cells, Tacstd-negative luminal cells. 6 independent mice were used for bulk RNA-seq assay.

Extended Data Fig. 5 Functional characterization of Luminal-C cells.

a, Co-immunofluorescence of Tacstd2 with Ki67 in proximal prostate and distal prostate of T2Y mouse. b, Percentage of Ki67+ cells in Tacstd2-negative luminal cells, Proximal-Luminal-C cells and Distal-Luminal-C cells. c,d, Co-immunofluorescence of Ck8, Trp63 and endogenous YFP in organoids which derived from Dist-Luminal-C (c) and Prox-Luminal-C cells (d) of T2Y mouse prostates. e, H&E and immunohistochemical staining of prostate duct from renal grafts of total Luminal-C cells express YFP, Trp63 and Ck8. f, Co-immunofluorescence of Tacstd2 and endogenous YFP in renal grafts which derived from total Luminal-C cells. g,h, Co-immunofluorescence of Hoxb13 (g), Nkx3.1 (h) and endogenous YFP in renal grafts which derived from total Luminal-C cells. 4 independent mice were used in proliferation assay (a,b). These experiments were administered three (e-h) and five (c, d) times with similar results. Scale bars, 50μm (a,c-h).

Extended Data Fig. 6 Single-cell transcriptomic survey for prostate cells of intact and regressed mice (castrated for 7 days and castrated for 28 days).

a, Visualization of clustering of 17,305 single cells (points; n = 6 mice), based on the expression of known marker genes by t-SNE (left panel). Cell numbers and percentages of assigned cell types are summarized in the right panel. Luminal-A, type A luminal cell; Luminal-B, type B luminal cell; Luminal-C, type C luminal cell; Basal, basal cell; Stromal, stromal cell; Macro, macrophage; SV, seminal vesicle epithelial cell. b, T-SNE map shows the cell distribution from intact mice (day 0; n = 8,545 cells), regressed mouse (day 7; n = 5,734 cells) and (day 28; n = 3,006 cells). c, Bar graph shows the percentage of Luminal-A, Luminal-B and Luminal-C cells in total cells of intact mice (day 0), regressed mouse (day 7) and (day 28). d-j, T-SNE maps show the expression levels of marker genes across 8 clusters. Black circles indicate all luminal cluster (n = 13,136 cells) (d), basal cluster (n = 1,090 cells) (e), the Luminal-A cluster (n = 7,532 cells) (f), Luminal-B cluster (n = 4,903 cells) (g), Luminal-C cluster (n = 701 cells) (h), stromal cluster (n = 1,415 cells) (i), macrophage cluster (n = 727 cells) (j). t-SNE map shows cells that are colored by the log-scale normalized read count of marker genes. k, Mean Expression in target cells (log2[TP10K], color) and fraction of expressing cells (dot size) of key luminal markers of Luminal-A, Luminal-B and Luminal-C (rows) in cells from each luminal sub-clusters of intact mice (day 0), regressed mouse (day 7) and (day 28) (columns).

Extended Data Fig. 7 Lineage tracing of Psca-expressing Dist-Luminal-C cells.

a, Schematic of targeting strategy to generate the PaY (PscaCreERT2/+; Rosa26EYFP/+) mouse is used to label Psca-expression cells by EYFP expression at 8-week male mice. b, Time-line for Luminal-C cell labeling and prostate regression-regeneration in PaY mouse prostate. c, Co-immunofluorescence of Ck5, Ck8 and Trp63 with endogenous YFP in intact PaY mouse prostates 2-weeks after tamoxifen injection. d, Percentage of YFP + cell in Ck5- cells, Ck5+ cells, Trp63- cells, Trp63+ cells, Ck8- cells and Ck8+ cells of 10-week PaY mouse prostate. e, Co-immunofluorescence of Tacstd2 with endogenous YFP in intact PaY mouse prostate distal regions 2-weeks after tamoxifen injection. f, Co-immunofluorescence of Ck5, Ck8 and Trp63 with endogenous YFP in regenerated prostate after one cycle of regression-regeneration. g, Co-immunofluorescence of Ck5, Ck8 and Trp63 with endogenous YFP in regenerated prostate after three cycles of regression-regeneration. h, Percentage of YFP-positive cell clone in intact, regenerated prostate and regenerated prostate after one or three cycles of regression-regeneration. 8 independent mice were used for each experiment. Scale bars, 50 μm (c, e, f, g). Data show mean ± standard deviation and two-way ANOVA (h). ****P < 0.0001 (h).

Extended Data Fig. 8 Dist-Luminal-C cells are favored to generate prostate cancer.

a, H&E and Co-immunofluorescence of pAkt, Tacstd2 and Ck4 in T2P mouse prostate one month after tamoxifen treatment. Most of Pten-loss luminal cells gained the Luminal-C marker Tacstd2 and Ck4 expression. b, Co-immunofluorescence of Luminal-A (Hoxb13high; Tacstd2-; pAkt + ) and Dist-Luminal-C (Tacstd2 + ; Hoxb13low; pAkt + ) cells with Pten deletion in T2P mouse prostate 7 days after tamoxifen treatment. c, Co-immunofluorescence of Luminal-B (Nkx3.1high; Tacstd2-; pAkt + ) and Dist-Luminal-C (Tacstd2 + ; Nkx3.1low; pAkt + ) cells with Pten deletion in T2P mouse prostate 7 days after tamoxifen treatment. d, Co-immunofluorescence of Luminal-A (Hoxb13high; Tacstd2-; pAkt + ) and Dist-Luminal-C (Tacstd2 + ; Hoxb13low; pAkt + ) cells with Pten deletion in T2P mouse prostate 14 days after tamoxifen treatment. e, Co-immunofluorescence of Luminal-B (Nkx3.1high; Tacstd2-; pAkt + ) and Dist-Luminal-C (Tacstd2 + ; Nkx3.1low; pAkt + ) cells with Pten deletion in T2P mouse prostate 14 days after tamoxifen treatment. f, Percentage of Luminal-A (Hoxb13high; Tacstd2-; pAkt + ), Luminal-B (Nkx3.1high; Tacstd2-; pAkt + ) and Dist-Luminal-C (Tacstd2 + ; Nkx3.1low; pAkt + ) cell clone in T2P mouse prostates after 7 or 14 days of tamoxifen treatment. g, Percentage of cell types in T2P mouse prostates after 7 or 14 days of tamoxifen treatment. In (f) and (g) data were from at least three independent experiments, which involving five mice (**P < 0.01; ****P < 0.0001, 2way ANOVA for multiple comparisons and unpaired t test). Scale bars, 50μm (a), 25μm (b-e). These data were from three independent experiments, which involving five mice(a-g). Data show mean ± standard deviation and 2way ANOVA for multiple comparisons (f,g). Scale bars, 50μm (a), 25μm (b-e). **P < 0.01; ****P < 0.0001 (f,g).

Extended Data Fig. 9 Decoding of the identity of cell types within the main human prostate cell clusters.

a, T-SNE maps show the expression levels of epithelial cell marker Epcam across 7 clusters. Blue circles indicate all the epithelial cell clusters (n = 9,825 cells). b-h, T-SNE maps show the expression levels of marker genes across 7 clusters. Blue circles indicate the h-Basal cluster (n = 5,696 cells)(b), all luminal cell clusters (n = 4,129 cells)(c), h-Luminal-A/B cluster (n = 3,434 cells) (d), h-Stromal cluster (n = 387 cells) (e), h-Macrophage cluster (n = 439 cells) (f), h-Lymphocyte cluster (n = 106 cells) (g), and h-Endothelial cluster (n = 617 cells) (h). i, Visualization of clustering of prostate single luminal cells, based on the expression of known marker genes by t-SNE (n = 4,129 cells). Decoding of the identity of cell types within the main luminal cell clusters. j, T-SNE maps show the expression levels of h-Luminal-C cell markers CK4, PSCA, TACSTD2 and PIGR (n = 908 cells). k, T-SNE maps show the expression levels of mouse Luminal-A/B cell markers HOXB13 and NKX3.1 (n = 3,166 cells). l, T-SNE maps show the expression levels of h-Luminal-A cell markers MSMB, KLK3, KLK2 and NPY (n = 2,743 cells). m, T-SNE maps show the expression levels of Luminal-B cell markers SLC14A1, MEG3, FHL2 and KRT23 (n = 423 cells). Black circle indicate the indicated cell clusters. t-SNE maps showed cells that are colored by the log-scale normalized read count of marker genes.

Extended Data Fig. 10 The expression levels of h-Luminal-C markers in human prostate cancer.

a, TACSTD2 immunohistochemistry staining of human prostate cancer samples (left panel), the graph indicates the percentage of TACSTD2 expression level (low, medium, high) in human prostate cancer samples (right panel). b, KRT4 immunohistochemistry staining of human prostate cancer samples (left panel), the graph indicates percentage of KRT4 expression level (low, medium, high) in human prostate cancer samples (right panel). c, PSCA immunohistochemistry staining of human prostate cancer samples (left panel), the graph indicates percentage of PSCA expression level (low, medium, high) in human prostate cancer samples (left panel). d,e, The expression levels of h-Luminal-C markers (TACSTD2, KRT4, PSCA) were analyzed in human prostate tumors and normal prostates from TCGA (n = 547) (d) and GSE8218 (n = 136) (e) data set. f, Graphs indicate the relationship between expression levels of h-Luminal-C markers (TACSTD2, KRT4 and PSCA) and tumor stage (n = 547). Scale bars, 50μm (a-c). 13 prostate cancer samples are from Fudan University Shanghai Cancer Center, the others are from the Human Protein Atlas (https://www.proteinatlas.org/) (a-c). These experiments were administered three times with similar results (a-c). Data show mean ± standard deviation and unpaired two-tailed Student’s t-test (d-f).

Supplementary information

Supplementary Information

Supplementary Figs. 1–15 and Notes 1 and 2

Reporting Summary

Supplementary Tables

Supplementary Tables 1–8

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, W., Li, L., He, J. et al. Single-cell transcriptomics identifies a distinct luminal progenitor cell type in distal prostate invagination tips. Nat Genet 52, 908–918 (2020). https://doi.org/10.1038/s41588-020-0642-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-020-0642-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing